
10 Predictability Basics

10.1 A Model of Convecting Fluids: The Lorenz Model

Essentially from the textbook: Chaos and Nonlinear Dynamics. Robert C. Hilborn,
Oxford University Press, 1994.

The set of nonlinear equations (discuss linear oscillator, and exponential decay!)
derived in this section is a highly simplyfied model of a convecting fluid. The model
was introduced in 1963 by MIT meteorologist Edward Lorenz, who was interested
in modelling convection in the atmosphere. What Lorenz set out to demonstrate
was that even a very simple set of equations may have solutions whose behaviour
is essentially unpredictable. Unfortunately for the development of the science of
chaos, Lorenz published his results in the respectable, but little read Journal of the
Atmospheric Sciences, where they languished essentially unnoticed by mathemati-
cians and scientists in other fields until the 1970s (about 10 citations until 1972,
then 3000 in one year.......). Now that chaos is more widely appreciated, a minor
industry studying the Lorenz model equations has developed.

Here, the Lorenz equations will not be derived, we will just say enough to give
a feeling for what the equations tell us. In simple physical terms, the Lorenz model
treats the fluid system (say the atmosphere) as a fluid layer that is heated at the
bottom (due to the sun’s heating the earth’s surface, for example) and cooled at
the top. The bottom of the fluid is maintained at a temperature Tw (the ’warm’
temperature), which is higher than the temperature Tc (the ’cold’ temperature) at
the top. We will assume that the temperature difference Tw − Tc is held fixed.
(This type of system was studied experimentally by Benard in 1900. Lord Rayleigh
provided a theoretical understanding of some basic features in 1916. Hence, this
configuration is now called Rayleigh-Benard cell.) Fig. 68 shows the principle set-
up.

If the temperature difference δT = Tw−Tc is not too large, the fluid will remain
stationary. Heat is transferred from bottom to top by means of thermal conduction.
The tendency of warm (less dense) fluid to rise is counterbalanced by a loss of heat
from the warm fluid ’packet’ to the surrounding medium. The damping due to the
fluid viscosity prevents the packet from rising more rapidly than the time required
for it to come to the same temperature as its neighbours. Under these conditions
the temperature drops linearly with the vertical position from Tw at the bottom of
the layer to Tc at the top. However, if the temperature difference becomes large
enough, the buoyant forces eventually become strong enough to overcome viscosity
and steady circulation currents develop. In this situation heat is transferred from
the bottom to the top by the process of convection, the actual mass motion of the
fluid. In simple terms, when the warm packet of fluid reaches the top of the layer, it
looses heat to the cool region and then sinks to the bottom, where its temperature
goes up again. The net result is a circulation pattern that is stable in time.

With a further increase in temperature difference δT , the circulation currents
and the resulting temperature differences within the fluid start to vary in time.
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Figure 68: Setting of Rayleigh-Benard convection.

This never occurs for a linear system with frictional forces included. If a linear
system is subject to steady forces, (after an initial transition period) will be steady
in time.

10.2 The Lorenz Equations

The Lorenz model is based on a gross simplification of the fundamental Navier-
Stokes equations for fluids (explain the approach to insert fixed spatial dependencies
of solutions into the Navier-Stokes equations, then look for solutions of the time-
dependent amplitudes). The fluid motion and resulting temperature differences can
be expressed in terms of these three variables, conventionally called X(t), Y (t) and
Z(t). These are not spatial variables. X is related to the time-dependence of the
so-called fluid stream function. The variables Y and Z are related to the time
dependence of the temperature deviations away from the linear temperature drop
from bottom to top, which one obtains for the nonconvective steady-state situation.
In particular, Y is proportional to the temperature difference between the rising and
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falling parts of the fluid at a given height, while Z is proportional to the deviation
from temperature linearity as a function of vertical position.

Using these variables, we may write the Lorenz model equations as three coupled
differential equation

Ẋ = p(Y −X) (163)

Ẏ = −XZ + rX − Y
Ż = XY − bZ .

p, r, b are adjustable parameters: p is the so-called Prandtl number, which is defined
to be the ratio of kinetic viscosity of the fluid to its thermal diffusion coefficient.
r is proportional to the Rayleigh number, which is a dimensionless measure of the
temperature difference between the bottom and top of the fluid. As the temperature
difference increases, the Rayleigh number increases. The final parameter b is related
to the ratio of the vertical height h of the fluid layer to the horizontal size of the
convection rolls. It turns out that for b = 8/3, the convection begins for the smallest
value of the Rayleigh number, that is for the smallest value of the temperature
difference δT . This value is usually chosen to study the Lorenz model. p is then
chosen for the particular fluid under study. Lorenz (LOR63) used the value p = 10
(which corresponds roughly to cold water), a value that had been used in a previous
study of Rayleigh-Benard convection by Saltzman (SAL62). We let r, the Rayleigh
number, be the adjustable control parameter. The Lorenz model, although based
on what appears to be a very simple set of differential equations, exhibits very
complex behaviour. The equations look so simple that one is led to guess that it
would be easy to write down their solutions. In fact, it is now believed that it is in
principle impossible to give the solutions in analytical form. Thus, we must solve
the equations numerically (explain possible discretization!). Here we will discuss a
few results of those integrations.

10.3 Behaviour of Solutions to the Lorenz Equations

For small values of the parameter r, that is, for small temperature differences,
δT , the model predicts that the stationary, nonconvecting state is the stable con-
dition. In terms of the variables X,Y, Z, this state is described by the values
Xs1 = 0, Ys1 = 0, Zs1 = 0. For values of r greater that 1, steady convection sets in
(is is actually quite easy to perform a linear stability analysis of this stationary point
at zero, and it is left to you as an exercise, if you wish.....). There are two possible
convective states: one corresponding to clockwise rotation, the other to counterclock-
wise rotation (discuss calculation of stationary points: Xs2,3 = ±

√
b(r − 1), Ys2,3 =

±
√
b(r − 1), Zs2,3 = r − 1, solutions 2,3 only exist for r > 1). Some initial condi-

tions lead to one state, other initial conditions to the other state. For p > b + 1,
this steady convection is unstable for large enough r and gives way to more complex
behaviour. As r increases, the behaviour has regions of chaotic behaviour intermixed
with regions of periodic behaviour and regions of intermittency, which cycle back
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and forth, apparently random, between chaotic and periodic behaviour. Solutions
are shown in Fig. 69 for different values of r (discuss dependence of solutions on
initial conditions for all cases).

Note that even though the Lorenz equations strictly only apply to the Rayleigh-
Benard convection experiment (and even here they are crude approximations to the
full equations), these equations are applied to study the behaviour of many complex
systems. For example, there is a vast literature on application to Indian monsoon
intraseasonal variability, extratropical flow regimes, etc.

10.4 Kinds of predictability

It is the dependence of the solutions on small variations (uncertainties) in the initial
conditions of our nonlinear system (Navier-Stokes equations), that leads us to the
introduction of the concepts of predictability. Adrian Tompkins will in his lecture on
Numerical Weather Prediction (NWP) discuss what the sources of uncertainties in
the initial conditions are (obviousely related to measurement errors). There are other
sources of uncertainties related to model imperfections that may also be included in
the treatment, but are excluded here at the moment.

From Lorenz system we can understand the two principle kinds of predictabili-
ties. The first kind is the (atmospheric) initial condition predictability, which can be
illustrated looking at the development of an initial condition ensemble (this means
many different initial conditions that have to be considered because of our uncer-
tainties in the initial conditions). Fig. 70 illustrates the time development of such
an initial condition ensemble in the Lorenz system. Predictability that results from
the atmospheric initial conditions is the subject of NWP, and the limit turns out to
be a few days. The NWP problem will be discussed by Adrian Tompkins in depth.

The more general case also including model uncertainty is illustrated in Fig. 71,
which again illustrates the principle of growth in time of the differences between the
different simulations, which could be interpreted as measure of uncertainty.

The predictability is usually measured using the ensemble method, meaning that
several realizations of a prediction are performed from only slightly different initial
conditions.

Fig. 72 shows the mean (root-mean-sqare) difference of the near surface air
temperature at one gridpoint in Europe (upper panel) and equatorial Africa (lower
panel) from the ECMWF seasonal hindcast ensemble (15 members) for slightly dif-
ferent initial conditions (we will discuss later what exactly this system is). As can be
seen the error grows quickly in the first few days (even faster for equatorial Africa),
then saturates more or less around 15-20 days for Europe, but already after 2-3
days in equatorial Africa, and at a much smaller saturation value. This feature
has important implications for seasonal predictability in extratropical and tropical
regions!

Usually, initial condition predictability of the atmosphere (particularly in the
extratropics) is limited by a typical error growth time scale of a few days, which
effectively means that no reasonable prediction can be made after a week or so (see
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Fig. 72). This initial condition predictability is also referred to as predictability of
the first kind. The predictability of the second kind results from the fact that the
solutions of nonlinear systems (like e.g. the Lorenz system) stay in any case relatively
close to the unstable stationary points, or Attractors. If any external forcing changes
these stationary points, the solutions will change systematically with the changing
stationary points. We can imagine that such a situation occurs, for example, in
the atmosphere in the case of a large El Nino event. The atmospheric weather
or noise will be chaotic and unpredictable on a seasonal time-scale (see Fig. 72),
but the (imaginary) stationary state around which the atmosphere evolves may be
shifting far enough that we can predict the average climate in this situation. This is
what is referred to as predictability of the second kind (for the atmosphere). This
is the usual situation we consider in seasonal forecasts. It is interesting for this to
consider the differences in the saturation errors seen in Fig. 72, which is much larger
in extratropical regions compared with tropical regions. This indicates potentially
more predictability of the second kind in the tropics, even if predictability of the
first kind is less. We will see in the following sections that this is indeed generally
the case.

Note, however, that the separation between predictability of first and second
kind is a little arbitrary and we need to specify exactly for which system. In all
above reference to predicability of first and second kind I have added atmosphere.
Indeed, seasonal forecasts are performed with coupled ocean-atmosphere models.
For the ocean-atmospheric system, we are looking again at the initial condition
predictability, or predictability of the first kind even for seasonal forecasts. The
predictability relies then on the fact that some parts of the oceans evolve on much
longer time-scales compared to the atmosphere (e.g. ENSO has a period of 2-7
years!). The same argument may apply to other ’external’ forcing, for example,
carbon dioxide may be considered as external forcing in many standard models,
but if our model includes a carbon cycle, then it is part of the dynamical system
itself. As a note, some researchers have also argued that an external forcing may
not necessarily shift the attractor, but may express itself as a change of probability
of the system to be close to one or the other stationary state (see Fig 73 from paper
by Corti, Molteni and Palmer), which may make it difficult to identify, e.g. Climate
change from observations.
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Figure 69: Solutions of the Lorenz equations for different parameters r.
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Figure 70: Illustration of time evolution of an initial condition ensemble in the
Lorenz system.

Figure 71: Illustration of the predictability problem.
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Figure 72: The mean (root-mean-square) difference of the near surface air temper-
atureat one gridpoint in Europe (15E, 50N) and equatorial Africa (20E, 0N) from
the ECMWF seasonal hindcast ensemble (15 members) for slightly different initial
conditions. Units are K.
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Figure 73: Illustration of frequency of occurence changes in a Lorenz system from
paper Corti, S. , F. Molteni and T. N. Palmer, 1999: Signature of recent climate
change in frequencies of natural atmospheric circulation regimes. Nature, 398, 799-
802
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