
7 (Atmospheric) Planetary Boundary Layer Processes

Figure 35: Mean DJF Sea Level Pressure (SLP) and surface winds in the North
Pacific from observations (NCEP-NCAR re-analysis). Units are m/s for wind and
hpa for SLP.

Figure 35 shows the winter mean (DJF) climatology of Sea Level Pressure (SLP)
and surface winds in the North Pacific. As we expect for geostrophy, winds are
mainly parallel to the isobars (lines of constant pressure). However, there seems to
be a systematic tendency for a component of the winds towards the low pressure.
In this section we will try to understand this systematic departure from geostrophy.
Do you have a guess why this departure exists?

So far we have ignored the effect of friction on the flows. However, in order to
understand climate dynamics it is important to consider the effects of friction, par-
ticularly the one provided by the planetary boundary layer, which covers roughly the
lowest kilometer(s) of the atmosphere. The boundary layer frictional processes are
ultimately induced by the molecular viscosity. However, this effect is only relevant
in the few millimeters closest to the surface. In the largest part of the planetary
boundary layer turbulent eddies take over the role of molecular friction. This is part
of the energy cascade, meaning that in the large-scale flow ever smaller eddies are
embedded that carry energy to ever smaller scales until finally molecular viscosity
takes over. As for all sections, a whole lecture course could be devoted to this topic.
Therefore we will concentrate on the features that are most relevant and essential
to understand climate dynamics.

7.1 The Boussinesq Approximation

The density in the lowest part of the Atmosphere varies little (about 10 % of its
mean value). The flow may be considered as essentially incompressible if only the
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momentum equation is considered. Therefore, for simplicity we assume the density
to be constant. Let us consider therefore horizontal momentum equations 132 and
133, in which ρ is considered to be a constant

du

dt
= −1

ρ

∂p

∂x
+ fv (194)

dv

dt
= −1

ρ

∂p

∂y
− fu . (195)

and the continuity equation for incompressible flows 142

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (196)

This set of equations is equivalent to the barotropic shallow water equations intro-
duced and used several times already. However, the Boussinesq approximation goes
beyond this, because it also involves an approximation to the vertical momentum
equation that is different from the hydrostatic equation and allows for buoyancy
effects there (as has been used in the EST course of the last term). Here we do not
need to consider this equation.

7.2 Reynolds Averaging

In order to simulate the effect of the smaller scale eddies on the larger scale (“re-
solved”) flow, is it useful to apply an averaging operator to the equations. The idea
is that the total flow can be divided into a slow evolving large scale field and into
small-scale eddy fluctuations

u = u+ u′, v = v + v′ . (197)

Formally, the operator could be a temporal and/or spatial average. For the total
derivative of a quantity A
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, (198)

where we have added a zero according to the incompressibility condition 196. Ther-
feore we may write the total derivative (for incompressible flow!) as

dA

dt
=

(
∂A

∂t
+
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+
∂Av

∂y
+
∂Aw
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)
, (199)

Application of the averaging operator yields

dA

dt
=

(
∂A

∂t
+
∂(Au+A′u′)
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+
∂(Av +A′v′)

∂y
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)
, (200)
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because
ab = (a+ a′)(b+ b′) = ab+ ab′ + a′b+ a′b′ = ab+ a′b′ ,

and a′ = b′ = 0. Therefore application of the averaging operator to Eqs. 194 and
195 yields

du

dt
= −1

ρ

∂p

∂x
+ fv − ∂u′u′

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
(201)
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dt
= −1
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− fu− ∂v′u′

∂x
− ∂v′v′

∂y
− ∂v′w′

∂z
, (202)

where
d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(203)

is the rate of change following the large-scale (or resolved) flow. Applying the zonal
average to the continuity equation leads to

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (204)

If we compare Eqs. 201 and 202 with 195 and 195 we see that extra terms emerge if
we follow a particle with the average large-scale flow. These can be interpreted as the
effects of the small-scale eddies on the large-scale flow, and are called convergence
of eddy momentum fluxes. Obviousely, in order to solve Eqs. 201 and 202 for the
large-scale flow, the additional terms have to be parameterized in terms of mean flow
properties. This is big topic in fluid dynamics, and is called closure problem. Note
that a very similar problem occurs when we write down the Navier-Stokes equations
for numerical models which intrinsically have a grid (and time) spacing. Turbulence
theories give some clues how such parameterizations should look like. One of the
simplest one is the flux-gradient theory, which states that the effect of small-scale
eddies on the large-scale flow is similar to the effect of molecular viscosity on smaller
scale flow. The effect of viscosity on the small scale flow is to bring the flow into
equilibrium, that is to reduce contrasts or gradient. Also note that the geometry
(horizontal surface) means that changes in the vertical direction are much larger than
in the horizontal direction (horizontal homogeneity). We have parameterizations of
the type:

u′w′ = −Km
∂u

∂z
(205)

v′w′ = −Km
∂v

∂z
, (206)

where Km can be a function of the vertical coordinate z. All other momentum fluxes
can be approximated to be close to zero in Eqs. 201 and 202.
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7.3 The Ekman Layer

The Ekman layer is the layer that connects a layer very close to the surface to the
free atmosphere where we have near geostrophic equilibrium. Using the geostrophic
wind (note that we can consider for the current analysis f = f0 = const)

ug = − 1

fρ

∂p

∂y
, vg =

1

fρ

∂p

∂x
,

with this and Eqs. 205-206, the stationary (equilibrium) approximation to Eqs. 201
and 202 are

Km
∂2u

∂z2
+ f(v − vg) = 0 (207)

Km
∂2v

∂z2
− f(u− ug) = 0 , (208)

where we have dropped the overbar for average quantities for convenience (only
average quantities appear). Note that also the mean vertical advection term has
been dropped because of smallness compared to the other terms. The horizontal
advection terms are dropped because of the horizontal homogeneity condition. If we
assume ug = const., and vg = const. with height, then we can substitute u∗ = u−ug
and v∗ = v − vg. to get a system of the type

Km
∂2

∂z2

(
u∗
v∗

)
+

(
0 f
−f 0

)(
u∗
v∗

)
= 0 . (209)

We assume a solution of the type u∗ = Aeimz, v∗ = Beimz, then it follows
(
−Kmm

2 f
−f −Kmm

2

)(
A
B

)
= 0 . (210)

Following basic algegra, non-trivial solutions of such a linear are found by setting
the determinant of the 2x2 matrix to zero

K2
mm

4 + f2 = 0 . (211)

The four solutions are for positive f (northern hemisphere; otherwise we have to use
negative f for southern hemisphere)

m1 =
√
i

√
f

km
, m2 = −

√
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√
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km
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√
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√
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√

f
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. (212)

With
√
i = (1 + i)/

√
2, we have

m1 = (1+ i)

√
f

2km
, m2 = −(1+ i)

√
f

2km
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√
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, m4 = (1− i)

√
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2km
.

(213)
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The boundary conditions are geostrophy (u = ug, v = vg) as z goes to infinity,
therefore u∗ = v∗ = 0 and u = v = 0 or v∗ = −vg, u∗ = −ug at z=0. The boundary
condition as z goes to infinity excludes solutions that grow, therefore the solutions
with negative i (m2 and m4) are excluded. If we insert the solutions m1 and m3

back into the original system 210, we can determine the two eigenvectors, which are

x1 =

(
1
i

)

and

x3 =

(
1
−i

)

The two eigenvectors are complex conjugate and therefore not independent. There-
fore the solution simply given by m1 ,

u∗ = aeim1z = a[cos(γz) + i sin(γz)]e−γz (214)

v∗ = iaeim1z = ia[cos(γz) + i sin(γz)]e−γz , (215)

where we have used γ =
√
f/(2Km). Let a = b+ic, then the real part of the solution

is

u∗ = b cos(γz)e−γz − c sin(γz))e−γz (216)

v∗ = −b sin(γz)e−γz − c cos(γz)e−γz (217)

and with z = 0: u∗(z = 0) = −ug = b, v∗(z = 0) = −vg = −c or

u = ug − [ug cos(γz) + vg sin(γz)]e−γz (218)

v = vg + [ug sin(γz)− vg cos(γz)]e−γz , (219)

The height of the boundary layer may be defined where the wind is for the first
time parallel to the geostrophic wind, which is at De = π/γ = π

√
2Km/f . We

can use this formula to estimate the value of the eddy viscosity Km. Observations
of the mean boundary layer height in mid-latitudes give De ≈ 1 km, therefore
Km = 1/2f(De/π)2 ≈ 5 m2 s−1. An important application of the Ekman solutions
218 and 219 is that we can calculate the vertical velocity at the top of the Ekman
Layer induced by the action of turbulent eddies.

Let us calculate the divergence of the winds in the Ekman Layer

∂u

∂x
+
∂v

∂y
=

(
∂ug
∂x

+
∂vg
∂y

) (
1− cos(γz)e−γz

)
(220)

−
(
∂vg
∂x
− ∂ug

∂y

)
sin(γz)e−γz

= −ξg sin(γz)e−γz.

This equation states that the divergence in the Ekman layer is proportional to the
negative geostrophic vorticity, a very important effect of the boundary layer. Positive
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Figure 36: Idealized and observed Ekman Layer velocities Source:
http://oceanworld.tamu.edu/resources/ocng textbook/chapter09/chapter09 02.htm.

(cyclonic vorticity) leads to convergence! Accorgdng to the continuity equation 196,
this will lead to vertical motion, which is on top of the Ekman Layer

w(De) = −
∫ De

0

(
∂u

∂x
+
∂v

∂y

)
dz (221)

= ξg
e−γz

2γ
[sin(γz)− cos(γz)]

∣∣∣∣∣

De

0

=
ξg
2γ

(
1 + e−π

)

≈ ξg
2γ

= ξg

√
Km

2f
,

where we have assumed that the geostrophic wind is independent of height within the
Ekman Layer. This is again an important result, a positive vortivity leads to upward
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motion through Ekman effets on top of the boundary layer. This is called boundary
layer pumping or Ekman pumping. It may be used to explain vertical motions
and therefore rainfall anomalies induced by the Gill responses in tropical regions as
derived in Section 6.3. It states that whenever we calculate a flow response that
has (geostrophic) vorticity, this will lead to vertical motion and therefore a rainfall
response. Given that geostrophy is valid from approximately 10 degrees away from
the equator, this rule can be used for many flow responses. Remember that we have
shown in chapter 5 that even the zonal winds in the close equatorial Kelvin waves
are in exact geostrophic equilibrium. We can estimate the typical magnitude of the
vertical velocity 221 by inserting ξg = 10−5s−1, De = 1km or γ = 3 × 10−3 m−1

to be w(De) ≈ 10−5/(2 × 3 × 10−3) m s−1 or 2 × 10−3 m s−1. This a substantial
vertical velocity, comparable to the one induced by a heating anomaly of about Q/cp
1 k/day in the tropical regions, if we use equation 174 and Sp ≈ 5 × 10−4 K Pa−1

to estimate the vertical velocity:

w ≈ Q

cp

1

Spρg
.

Also in the Ocean Ekman Layers exist (have you discussed them?). Clearly at the
bottom of the ocean very similar processes take place as discussed here. Even at the
top of the oceans we have an Ekman Layer (have you discussed this?). However,
the main change is the boundary condition at the surface, which is given by the
atmospheric winds that drive the ocean, in the interior the boundary condition
can be assumed to be geostrophic again. Otherwise we can use the above derived
methodology also to derive the ocean surface Ekman Layer.

Exercises

1. Verify that the Ekman solution 218 and 219 is indeed a solution of the original
system of equations 207 and 208.

2. Calculate the scalar product between the pressure gradient and the wind within
the Ekman layer given by Eqs. 218 and 219. Is the wind directed into or out
of a low pressure system?

3. Write a fortran code that uses the Eqs. 218 and 219 and plot the solution as
as phase space diagram (u,v) as in Fig 36. Also, solve the original equations
207 and 208 numerically by keeping the local time derivative in the Ekman
equations:

∂u

∂t
= Km

∂2u

∂z2
+ f(v − vg) (222)

∂v

∂t
= Km

∂2v

∂z2
− f(u− ug) . (223)

For both analysical and numerical solutions use Km = 5 m2 s−1, the coriolis
parameter at 45◦N, ug = 10 m s−1, vg = 0. The vertical domain should be [0
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m , 3000 m]. Use as initial condition u = ug, v = 0. Compare the numerical
stationary with the analytical solution. How long does it take for the solution
to become approximately stationary?
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