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6.1 Some general observations

Lets consider the sea surface temperature anomaly on 26th November, 2015 (Fig.
15). It’s a manifestation of an El Nino development in the year 2015. Let’s try to
understand what is going on in the Pacific region.

The typical equatorial Pacific background state is shown in Fig. 16, in a vertical-
zonal section. As can be seen it gets colder as we go from the surface downward
(why?). And it also gets colder if we go from west to east. Looking at a map of sea
surface temperature (SST), we see this equatorial asymmetry clearly (Fig. 17).

A schematic what is the situation in normal conditions (or La Nina) is given
in 18. Trade winds are blowing near the equator from east to west (the reason
theses trade winds will be discussed later in this course, but briefly it is due to the
maximum convective heating that occurs in the mean around the equator). These
trade winds push the warm surface waters to the west. What is happening then in
the east?

However, there is an additional Bjerknes feedback mechanism working at the
equator, which even further strengthens the equatorial easterly winds as shown in
Fig. 19.

In El Nino conditions (Fig. 21) this normal situation breaks down and we get to
a situation where also the eastern Pacific is flushed with warm waters (intuitively
one would think that this is the ’normal’ situation).
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Figure 15: SST anomaly on 26. Nov 2015. Source:
http://www.ospo.noaa.gov/data/sst/anomaly/2015/anomnight.11.26.2015.gif.

6.2 Atmospheric (ENSO) Teleconnections

In winter 2015/2016 one of the largest El Nino event in recent history happened
(Fig. 22).

Such an ENSO event is considered to be the major source of seasonal predictabil-
ity due to ENSO teleconnections Fig. 23.

In this section the physical basis for atmospheric teleconnections induced by
tropical SST anomalies will be briefly discussed. How can we understand the origin
of these teleconnections? Assuming we have an area warm SST anomalies. How do
we assess what are the atmospheric adjustment processes. Surely a warm area of
SST’s will modify the stability of a parcel (see Fig. 24), but how exactly?

Note that the parcels that are considered here are much smaller in scale ( 1km)
compared to the large-scale flow adjustments that we want to understand eventually.
From the Atmospheric Physics course in the last term you know that for a moist,
saturated parcel to be unstable the following criterion has to be fulfilled:
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Figure 16: Average January temperature as a function of depths and longitude along
the equator. Map from Pacific Marine Environmental Laboratory of NOAA, Seattle.
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where quantities refer to the large-scale environment. As long as the parcel is not
saturated the stability condition governed by the dry adiabate by setting mvs to
zero. This means that a warm surface would favour unstable conditions (Fig. 25).

For the moist saturated adiabatically rising parcel we have
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Again, we can recover the unsaturated case by setting mvs to zero, and this leads to
the dry adiabatic lapse rate. This means the parcel always cools! It can be shown
(look at your Atmospheric Physics course) that due to the decreasing temperature
the Relative Humidity (RH) of a rising, unsaturated parcel always increases until
saturation is reached
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Figure 17: Mean sea-surface temperature calculated from the optimal interpolation
technique (Reynolds and Smith, 1995) using ship reports and AVHRR measurements
of temperature.
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If the parcel is rising further then condensation will occur. If the parcel raises far
enough then nearly all its moisture may condensate and fall out as rain. This leads to
diabatic heating of the atmosphere. In an unstable environment this leads to a huge
asymmetry between rising and sinking parcels, because the sinking parcel may just
evaporate the little moisture content in it. Note that if no rainfall is occurring, then
the process of rising (condensation) and sinking (evaporation) would be reversible
(no Entropy generation). It is the net heating related to the falling rain that makes
the convection process irreversible. See also Foehn effect mechanism (Fig. 26).

As a net effect there is a large-scale tropospheric convective heating due to the
SST-induced unstable conditions. From the thermodynamic equation (e.g. 47), we
know that this will lead to further adjustments. In particular, for tropical regions
we may assume that horizontal and time derivatives are negligible. We get the
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Figure 18: Normal conditions in the Pacific with strong trade winds pushing surface
water toward the west and heavy rain in the west driving the atmospheric circulation.
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This relation may also be applied to perturbations of Q and w.
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if we assume that perturbations of Sp and ρ are small. It follows that increased
heating in the region of warm SST anomalies has to be compensated by rising
motion. Further adjustments may be explained by continuity as illustrated in Fig.
27.

For ENSO this could look like in Fig. 28. The signal in the upper troposphere
may be spread through equatorial Rossby and Kelvin waves, and the resulting upper-
level divergence may act as a Rossby-wave source in the vorticity equation 11.
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Figure 19: Cold conditions in east and warm conditions in west increase trade winds
further due to the hydrostatic equation.

The typical sea surface temperature anomaly for an El Nino event is shown in
Fig. 29. A warming of typically more than 1K is occurring in the eastern Pacific
and surrounded by a cooling (so-called Horse-shoe pattern).

Fig. 30 shows the typical (composite) response of the atmosphere (rainfall [or
heating!], and low-level winds) to the typical (composite) El Nino SST anomaly of
Fig. 29.

The response in the central equatorial Pacific is a weakening of the trade winds,
which is the positive atmospheric feedback, because a initial warm anomaly in the
eastern Pacific will cause a response that is strengthening the original SST anomaly
(why?). What is the typical period of ENSO? We will try to understand this local
atmospheric response and the subsequent ocean response in the following subsections
from a more theoretical point of view.

6.3 Atmospheric response to SST or heating anomaly

Kelvin and equatorial Rossby-gravity waves are also relevant for shaping the sta-
tionary response to an equatorial heating, so-called Gill response (Gill, 1980). In
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Figure 20: La Nina conditions in the Pacific with strong trade winds (black ar-
rows) pushing surface water toward the west (white arrows) and heavy rain in the
west driving the atmospheric circulation (black arrows). Colors give temperature
of the ocean surface, red is hottest, blue is coldest. From: NOAA Pacific Marine
Environmental Laboratory.

the Gill model a simple parameterization of the effect of heating on divergence, Q, is
added to the continuity equation (in the Gill’s paper and references therein proper
justifications for this approach are presented)
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Finally, rayleigh friction and Newtonian cooling are added to the equations by re-
placing the time derivatives ∂/∂t by ∂/∂t + ε, and the equations are solved for a
stationary state. The result of the (complicated) computations are illustrated in
Fig. 31. To the west of the heating, we find the Rossby-gravity wave-type response,
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Figure 21: El Niño conditions in the Pacific with weak or reversed trade winds in
the west (black arrows) allowing surface water to surge eastward (white arrows) and
with heavy rain in the central equatorial Pacific driving the atmospheric circulation
(black arrows). Colors give temperature of the ocean surface, red is hottest, blue is
coldest. From: NOAA Pacific Marine Environmental Laboratory.

to the east we find the Kelvin wave-type response. Note that the Gill model is used,
for example, to explain the atmospheric part of the positive (Bjerknes) feedback
that leads to the ENSO phenomenon. Also note that a positive ’heating’ Q explains
the low-level convergent motions, but not the upper level ones (one would have to
change sign to explain the upper-level response; upper-level divergence in case of a
positive heating! Discuss!).

6.4 Response in the equatorial Ocean

6.4.1 Reduced gravity model

In this subsection we want to derive the equatorial ocean response to an atmospheric
forcing of the Gill-type. If we consider the mean stratification of the equatorial
Pacific Ocean of Fig. 16, one sees that warm water is residing on top of colder
waters, divided by the thermocline. The simplest model of the upper Pacific are
assuming therefore that there are 2 layers, divided by a density jump. Let layer 2 be
the lower layer of density ρ2 and height h2, and the upper layer be of density ρ1 and
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height h1. The aim here is to derive the pressure gradient force in the upper layer in
this situation. We derive the pressure gradient force by integrating the hydrostatic
equation 134 first in layer 2 from an arbitrary vertical position to the boundary h2

∫ h2(x,y,t)

z

∂p2

∂z
dz = −

∫ h2(x,y,t)

z
ρ2gdz , or (179)

p2(h2)− p2(x, y, z, t) = −ρ2g[h2(x, y, t)− z] . (180)

Then we apply the horizontal gradient

∇p2(h2) = ∇p2(x, y, t)− ρ2g∇h2(x, y, t) , (181)

noting that the horizontal pressure gradient is independent on the vertical position.
Next we integrate further in layer 1

∫ z

h2(x,y,t)

∂p1

∂z
dz = −

∫ z

h2(x,y,t)
ρ1gdz , or (182)

p1(x, y, z, t)− p1(h2) = −ρ1g[z − h2(x, y, t)] . (183)

We again apply the horizontal gradient

∇p1(x, y, t) = ∇p1(h2) + ρ1g∇h2(x, y, t) , (184)

Continuity demands that p1(h2) = p2(h2), therefore inserting 184 into 181 leads
to:

∇p1(x, y, t) = ∇p2(x, y, t)− (ρ2 − ρ1)g∇h2(x, y, t) . (185)

Assuming the lower layer motionless and without pressure gradient ∇p2(x, y.t) = 0
and H = h1 + h2 = const (rigid lid; an approximation here), and therefore ∇h1 =
−∇h2 we get

∇p1(x, y, t) = (ρ2 − ρ1)g∇h1(x, y, t) , (186)

or
1

ρ1
∇p1(x, y, t) =

ρ2 − ρ1

ρ1
g∇h1(x, y, t) . (187)

The pressure gradient in the upper layer can be, to a first approximation, expressed
in terms of the change in density between lower and upper layer and the gradient
of the thermocline depth h1. Since with respect the standard one-layer case the
factor g is replaced by (ρ2 − ρ1)/ρ1g = g′, this model is called reduced gravity
model. The density change (ρ2− ρ1)/ρ1 is typically about 1%. The reduced gravity
model is identical to the shallow water equations, but with the pressure gradient
force 187, because if the slight change of density between the 2 layers. We add a
wind-stress forcing on the rhs of the following equations to mimic the ocean forced
case. These equations are similar to the atmospheric Gill model, but with forcing
in the momentum equations instead of in the continuity equation.
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We have used h instead of h1 for simplicity as the thermocline depth, and ρ instead
of ρ1 as density in the upper layer. It is quite instructive to consider the motionless
stationary state of such a model (even in a more complex situation this may be a
good approximation):
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assuming a typical situation in the equatorial Pacific with purely easterly trade
winds (τx < 0, τy = 0) it becomes clear why the equatorial Pacific thermocline is
tilted from west to east!!!!

It is interesting to note that the (forcing) free Eq. (188) - (190) are formally
identical to the shallow water equations 140, 141 and 145 that we used to derive the
equatorial Rossby and Kelvin waves, if we replace g by g’, the reduced gravity. This
means that the reduced gravity equations support the same solutions as the shallow
water equations near the equator, if we also in all phase velocities replace g by g’.
We will see these kind of waves in the following example.

In the following we present and discuss the ocean adjustment to a constant
atmospheric wind-stress forcing of the ocean derived from a model similar, but
slightly more complicated than Eq. 188 - 190. The addition is basically an equation
for the surface temperature that is not present in Eq. 188 - 190. In a strict sense, the
surface temperature would never be influenced by the thermocline depth as long as
this is positive. However, in the real world, there is a still a gradient present in the
upper-layer, meaning that if the thermocline is nearer to the surface, the temperature
is lower there, just as seen in Fig. 16. Furthermore, if temperature is allowed to
vary horizontally then there will also be horizontal advection of temperature.

6.5 Ocean response to a zonal wind stress anomaly

Fig. 32 shows the wind-stress forcing applied with maximum at equator at 180 E,
and a Gaussian shape of with 10 degrees in east-west and 5 degrees in north-south
direction. The forcing is of magnitude 0.015 N/m2, which is a typical response of the
atmosphere to a typical ENSO anomaly. This forcing is mimiking the atmospheric
Gill-response on the equator to the ENSO-induced heating (SST) anomaly. We are
considering the time evolution of the thermocline response to the constant forcing.
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Fig. 33a shows the response after the first month of forcing, and we see interestingly
that the response resembles the Gill response that we discussed for the atmosphere
to a diabatic heating anomaly, with an equatorial Kelvin wave to the east of the wind
stress forcing and 2 Rossby waves struddling the equator to the west. The Kelvin
wave signal moves to the east as time evolves and the Rossby wave signal moves
to the west (as they should). The Kelvin waves reach the eastern boundary after
about 4 month (Fig. 33b) and appear to transform into coastal Kelvin waves that
move north- and southward from the equator. The maximum response is reached
after about 6 month, and is then decaying somewhat. The stationary response is
seen in Fig. 33f. The thermocline tilt in the steady-state solution seems to balance
the wind-stress forcing, showing that Eqs. 191 are a good approximation.

Fig. 34 shows the corresponding response in sea surface temperatures (using
an additional equation not present in Eq. (188) - (190)). Remember that the
atmospheric forcing was mimicking the Gill-type response to a warm SST anomaly.
From Fig. 34 we clearly identify that the ocean response to the atmospheric forcing
provides a positive feedback: The SST in the eastern equatorial Pacific is further
increased. The SST response evolves slower than the thermocline response (because
the response starts in the central/western Pacific where the thermocline is relatively
deep in the mean state and its fluctuations are therefore less coupled to the surface.
The maximum positive feedback seems to occur after about 6 to 12 months and
it decays to reach an equilibrium. This decay could be interpreted as the delayed
negative feedback provided by the ocean to the ENSO phenomenon.

Exercises

1. Assume a mean wind stress distribution along the equator:

τx = 0 for lon ≤ 170 E

τx = −0.06 N/m2 for 170 E ≤ lon ≤ 240 E

τx = 0 for lon ≥ 240 E

(193)

Using the approximation 191, calculate the thermocline distribution along the
equator, assuming that the thermocline depth at the western edge is 150 m.
What is the total change in height between 170 E and 240 E?

2. Calculate the oceanic Kelvin wave speed of (using the reduced gravity approx-
imation) of an ocean with a mean thermocline depth of 100 m.
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Figure 22: Sea Surface Temperature Anomalies in winter 2015/2016.
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Figure 23: Some known ENSO teleconnections. Note that not all teleconnections
are shown, only the most robust ones. Source: NOAA
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Figure 24: Sketch of a parcel in an environment that is warmed from below.
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Figure 25: Sketch how the environment is favorable or unfavorable for convection
and may be influenced by surface conditions.
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Figure 26: Foehn effect mechanism.
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Figure 27: Large-scale adjustments to diabatic convective heating.
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Figure 28: Large-scale adjustments to diabatic convective heating induced by ENSO.
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Figure 29: Composite sea surface temperature anomaly for an El Nino condition.
Units are K.

Figure 30: Composite of response to an El Nino forcing. Shading Precipitation in
mm/day, vectors 925 hPa wind.
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Figure 31: Illustration response to equatorial heating according to the gill model.
Equatorial rossby waves shape the response to the west and Kelvin waves shape the
response to the east

Figure 32: Zonal wind stress forcing. Units are N/m2.
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Figure 33: Thermocline response to anomalous zonal wind stress forcing of Fig. 32.
a) after 1 month, b) after 2 months, c) after 4 months, d) after 6 months, e) after
12 months. f) stationary response. Units are m.
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Figure 34: SST response to anomalous zonal wind stress forcing of Fig. 32. a) after
1 month, b) after 2 months, c) after 4 months, d) after 6 months, e) after 12 months.
f) stationary response. Units are K.
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