
4 Baroclinic Instability

4.1 A two-layer Model

Even for a highly idealized mean flow profile the mathematical treatment of baro-
clinic instability in a continuously stratified atmosphere is rather complicated. Thus,
we focus on the simplest model that can incorporate baroclinic processes. The at-
mosphere is represented by two discrete layers bounded by surfaces numbered 0,2,
and 4 (generally taken to be the 0-, 500-, and 1000-hPa surfaces, respectively). The
quasi-geostrophic vorticity equation for the midlatitude β plane is applied at levels
denoted 1 and 3 and the thermodynamic energy equation is applied at level 2. Be-
fore writing the specific equations of the two-layer model, it is convenient to define a
geostrophic streamfunction, ψ ≡ Φ/f0 (see definitions leading to Eq. 21). Then the
geostrophic wind (Eq. 55) and the geostrophic vorticity (Eq. 66) can be expressed
as

v = k×∇ψ, ξ = ∇2ψ (104)

The quasi-hydrostatic vorticity equation (68) and the hydrostatic thermodynamic
equation (65) can be written with help of (37) in terms of ψ and ω as (assuming no
diabatic processes)
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We now apply the vorticity equation (105) at the two levels designated as 1
and 3, which are in the middle of the two layers. To do this we must estimate the
divergence term ∂ω/∂p at these levels using finite difference approximations to the
vertical derivatives

(
∂ω

∂p

)

1

≈ ω2 − ω0

δp
,

(
∂ω

∂p

)

3

≈ ω4 − ω2

δp
, (107)

where δp is the pressure interval between levels 0-2 and 2-4 and subscript notation
is used to designate the vertical level for each dependent variable. The resulting
vorticity equations are
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where we have used the fact that ω0 = 0 and assumed that ω4 = 0, which is approx-
imately true for a level lower boundary surface. We next write the thermodynamic
energy equation (106) at level 2. Here we must evaluate ∂ψ/∂p using the difference
formula

(∂ψ/∂p) ≈ (ψ3 − ψ1)/δp .
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The result is

∂
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σδp

f0
ω2 . (110)

The first term on the right-hand side in Eq. (110) is the advection of the 250-750
hPa thickness by the wind at 500 hPa. However, ψ2, the 500 hPa streamfunction,
is not a predicted field in this model. Therefore, ψ2 must be obtained by linearly
interpolating between the 250- and 750-hPa levels

ψ2 = (ψ1 + ψ3)/2 . (111)

If this interpolation formula is used, (108)-(110) become a closed set of prediction
equations in the variables ψ1, ψ3, and ω2.

4.2 Linear Perturbation Analysis

To keep the analysis as simple as possible we assume that the streamfunctions ψ1 and
ψ3 consist of basic state parts that depend linearly on y alone, plus perturbations
that depend only on x and t (similar to section 3). Thus, we let

ψ1 = −U1y + ψ′1(x, t)

ψ3 = −U3y + ψ′3(x, t) (112)

ω2 = ω′2(x, t) .

The zonal velocities at levels 1 and 3 are then constants with the values U1 and U3,
respectively. Hence, the perturbation field has meridional and vertical velocity com-
ponents only. Inserting (112) into (108)-(110) and linearizing yields the perturbation
equations (see section 3)
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where we have linearly interpolated to express v2 in terms of ψ1 and ψ3 and have
defined

Um ≡ (U1 + U3)/2, UT ≡ (U1 − U3)/2 .

Thus, Um and UT are, respectively, the vertically averaged mean zonal wind and the
mean thermal wind for the interval δp/2. The dynamical properties of this system
are more clearly expressed if (113)-(115) are combined to eliminate ω′2. We first note
that (113) and (114) can be rewritten as
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We now define the barotropic and baroclinic perturbations as

ψm ≡ (ψ′1 + ψ′3)/2, ψT ≡ (ψ′1 − ψ′3)/2 (118)

Adding (116) and (117) and using the definitions in (118) yields
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while subtracting (117) from (116) and combining with (115) to eliminate ω′2 yields
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where λ2 ≡ f2
0 /[σ(δp)2]. Equations (119) and (120) govern the evolution of the

barotropic (vertically averaged) and baroclinic (thermal) perturbation vorticities,
respectively. As usual we assume that wavelike solutions exist of the form

ψm = Aeik(x−ct), ψT = Beik(x−ct) . (121)

Substituting these assumed solutions into (119) and (120) and dividing through by
the common exponential factor, we obtain a pair of simultaneous linear algebraic
equations for the coefficients of A,B

ik[(c− Um)k2 + β]A− ik3UTB = 0 (122)

ik[(c− Um)(k2 + 2λ2) + β]B − ikUT (k2 − 2λ2)A = 0 . (123)

From the Mathematical Methods course we know that a homogeneous set of equa-
tions has only nontrivial solutions if the determinant of the coefficients for A and B
is zero. Thus the phase speed c must satisfy the condition

(c− Um)k2 + β −k2UT
−UT (k2 − 2λ2) (c− Um)(k2 + 2λ2) + β

= 0 , (124)

which gives a quadratic dispersion equation in c

(c−Um)2k2(k2 + 2λ2) + 2(c−Um)β(k2 +λ2) + [β2 +U2
Tk

2(2λ2− k2)] = 0 , (125)

The solution for c is

c = Um −
β(k2 + λ2)

k2(k2 + 2λ2)
± δ1/2 , (126)

where

δ ≡ β2λ4

k4(k2 + 2λ2)2
− U2

T (2λ2 − k2)

(k2 + 2λ2)
. (127)

We have shown that (121) is a solution for the system (119) and (120) only if the
phase speed satisfies (126). Although (126) appears to be rather complicated, it is
immediately apparent that if δ < 0 the phase speed will have an imaginary part and

33



the perturbations will amplify exponentially. Before discussing the general physical
conditions required for exponential growth it is useful to consider two special cases.

As the first special case we let UT = 0 so that the basic state thermal wind van-
ishes and the mean flow is barotropic. There can be no instability if the thermal wind
vanishes (i. e. without horizontal mean-state temperature gradients). The available
potential energy stored in the mean state temperature gradients is responsible for
baroclinic growth! The phase speeds in this case are

c1 = Um − βk−2 (128)

and
c2 = Um − β(k2 + 2λ2)−1 (129)

These are real quantities that correspond to the free (normal mode) oscillations
for the two-level model with a barotropic basic state current. The phase speed
c1 is simply the dispersion relationship for a barotropic Rossby wave with no y
dependence (see Eq. [75]). Substituting the expression (128) in place of c in (122)
and (123) we see that in this case B = 0, so that the perturbation is barotropic in
structure. The expression (129), on the other hand, may be interpreted as the phase
speed of an internal baroclinic Rossby wave. Note that c2 is a dispersion relationship
analogous to the Rossby wave speed for a homogeneous ocean with a free surface,
which was given in problem 3 of section 3. But, in the two-level model, the factor
2λ2 appears in the denominator in place of the f0/gH for the oceanic case. In each
of these cases there is vertical motion associated with the Rossby wave so that static
stability modified the phase speed.

Comparing (128) and (129) we see that the phase speed of the baroclinic mode is
generally much less than that of the barotropic mode, since for average midlatitude
tropospheric conditions λ2 ≈ 2 × 10−12 m−2, which is comparable in magnitude to
k for zonal wavelength of ∼ 4500 km.

Returning to the general case where all terms are retained in (126), the stability
criterion is most easily understood by computing the neutral curve, which connects
all values of UT and k for which δ = 0 so that the flow is marginally stable. From
Eq. (126), the condition δ = 0 implies that

β2λ4

k4(2λ2 + k2)
= U2

T (2λ2 − k2) (130)

or
k4/(4λ4) = 1/2{1± [1− β2/(4λ4U2

T )]1/2} . (131)

Fig. 4.2 shows nondimensional quantity k2/2λ2, which is a measure of the zonal
wavelength, plotted against the nondimensional parameter 2λ2UT /β, which is pro-
portional to the thermal wind, according to Eg. (131).

As indicated in the figure, the neutral curve separates the unstable region of the
UT , k plane from the stable region. It is clear that the inclusion of the β effect serves
to stabilize the flow, for unstable roots exist only for |UT | > β/(2λ2). In addition to a
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Figure 10: Neutral stability curve for the two-level baroclinic model

minimum value of UT required for unstable growth depends strongly on k. Thus, the
β effect strongly stabilizes the long-wave end of the wave spectrum (k → 0). Again,
the flow is always stable for waves shorter than the critical wavelength Lc =

√
2π/λ

(why?). The long-wave stabilization associated with the β effect is caused by the
rapid westward propagation of long waves, which occurs only when the β effect is
included in the model.

Differentiating Eq. (130) with respect to k and setting dUT /dk = 0, we find the
minimum value of UT for which unstable waves exist occurs when k2 =

√
2λ2. This

wave number corresponds to the wave of maximum instability. Wave numbers for
observed disturbances should be close to the wave number of maximum instability,
if UT were gradually raised from zero the flow would first become unstable for per-
turbations of wave number k = 21/4λ. Those perturbations would then amplify and
in the process remove energy from the mean thermal wind, thereby decreasing UT
and stabilizing the flow. Under normal conditions of static stability the wavelength
of maximum instability is about 4000 km, which is close to the average wavelength
for midlatitude synoptic systems.

Exercises

1. Suppose that a baroclinic fluid is confined between two rigid horizontal lids in
a rotating tank in which β = 0 but friction is presented in the form of linear
drag proportional to the velocity (i.e., Fr = −µv). Show that the two-level
model perturbation vorticity equations in cartesian coordinates can be written
as

(
∂

∂t
+ U1

∂

∂x
+ µ

)
∂2ψ′1
∂x2

− f0
ω′2
δp

= 0
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(
∂

∂t
+ U3

∂

∂x
+ µ

)
∂2ψ′3
∂x2

+ f0
ω′2
δp

= 0 ,

where perturbations are assumed in the form given in Eq. (112). The thermo-
dynamic equation remains (115). Assuming solutions of the form (121), show
that the phase speed satisfies a relationship similar to (126), with β replaced
everywhere by iµk and that as a result the condition for baroclinic instability
becomes

UT > µ(2λ2 − k2)−1/2 .
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