
3 Rossby Waves
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3.1 Free Barotropic Rossby Waves

The dispersion relation for free barotropic Rossby waves can be derived by linearizing
the barotropic vorticity equation in the form (21). This equation states that the
absolute (geostrophic) vorticity is conserved following the horizontal (geostrophic)
motion. As usual, we assume that the fields can be expressed as small perturbations
from a basic state ψ = ψ + ψ′. We linearize using a basic state that has only flow
in zonal direction ψ = −uy + const. This mean state fulfills Eq. (21). With this
mean state ∇2ψ = ∇2ψ′. Thus, by linearizing, in the first term the total derivative
operator can be replaced by the mean operator and it follows

(
∂

∂t
+ u

∂

∂x

)
∇2ψ′ + β

∂ψ′

∂x
= 0 . (71)

As usual, we seek for solutions of the type

ψ′ = Aei(kx+ly−νt) . (72)

Inserting (72) into (71) yields the dispersion relation

(−ν + ku)(−k2 − l2) + kβ = 0 , (73)

which we can solve immediately for ν

ν = uk − βk/K2 , (74)

where K2 ≡ k2 + l2 is the total horizontal wave number squared. Recalling that
cx = ν/k, we find that the zonal phase speed relative to the mean wind is

cx − u = −β/K2 . (75)

Thus, the Rossby wave zonal phase propagation is always westward relative to the
mean zonal flow. Furthermore, the Rossby wave phase speed depends inversely on
the square of the horizontal wave number. Therefore, Rossby waves are dispersive
waves whose phases speeds increase rapidly with increasing wavelength. This re-
sult is consistent with the discussion in section 2.4, in which we showed that the
advection of planetary vorticity, which tends to make the disturbances retrogress,
increasingly dominates over relative vortivcity advection as the wavelength of a dis-
turbance increases. Equation (75) provides a quantitative measure of this effect in
cases where the disturbance is small enough in amplitude.
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From Eq. (75) we may calculate the stationary free Rossby wave wavelength

K2 = β/u ≡ K2
s . (76)

This means that stationary free Rossby waves only exist if there is a positive mean
flow u. This condition is important for Rossby waves that may be generated by
tropical convection.

The group velocity of Rossby waves may be calculated as (exercise!):

cgx ≡
∂ν

∂k
= u+ β

k2 − l2
K4

(77)

cgy ≡
∂ν

∂l
= 2

βkl

K4
. (78)

Therefore, the energy propagation of stationary Rossby waves is always eastward
(Fig. 8; exercise!).

These waves can also be derived from the original, compressible equations, but
the analysis is much more complicated. There are some minor modifications in the
phase velocities if the full equations are considered, but the main results remain
valid.

3.2 Forced Topographic Rossby waves

Forced stationary Rossby waves are of primary importance for understanding the
planetary-scale circulation pattern. Such modes may be forced by longitudinal de-
pendent latent heating, or by flow over topography. Of particular importance for the
Northern Hemisphere extratropical circulation are stationary Rossby modes forced
by flow over the Rockies and the Himalayas.

As the simplest possible dynamical model of topographic Rossby waves we use
the barotropic vorticity equation for a homogeneous fluid of variable depth (e.g.
Eqs. 14 or 17). We assume that the upper boundary is at fixed height H and the
lower boundary is at the variable height hT (x, y). We also use the quasi-geostrophic
scaling |ξ| � f0. Then, from 14 and 17 we have

H
dh(ξ + f)

dt
= −f0

dhT
dt

, (79)

where is has been also assumed that h ≡ H − ht ≈ H on the left side (i.e. the
mountain height is much smaller than the troposphere height). After linearizing (as
we did to derive Eq. 71)

(
∂

∂t
+ ū

∂

∂x

)
∇2ψ′ + β

∂ψ′

∂x
= −f0

H
ū
∂hT
∂x

. (80)

Lets consider the solutions of Eq. (80) for the special case of a sinusoidal lower
boundary. We specify the topography to have the from

hT (x, y) = h0 sin(kx+ φ) cos ly , (81)
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where φ is an arbitrary phase (therefore equivalent to A cos kx + B sin kx). If we
insert the streamfunction perturbation

ψ′ = ψ0 sin(kx+ φ) cos ly , (82)

then Eq. (80) has the steady-state solution (i.e. dropping the partial time derivative)
[exercise!]

ψ0 = f0h0/[H(K2 −K2
s )] . (83)

The streamfunction is either exactly in phase (ridges over the mountains) or exactly
out of phase (troughs over the mountains) with the topography depending on the
sign K2 −K2

s . For long waves, (K < Ks), the topographic vorticity source in Eq.
(80) is primarily balanced by meridional advection of planetary vorticity (the β
effect). For short waves (K > Ks) the source is balanced primarily by the zonal
advection of relative vorticity.

The topographic wave solution (83) has the unrealistic characteristic that when
the wave number exactly equals the critical wave number Ks the amplitude goes
to infinity. This is the resonant response case when the wave number reaches the
stationary wave number of free Rossby waves.

Fig. 8 gives another example for a stationary Rossby wave, caused by ENSO
forcing (discuss Eq. 11).

3.3 Turning Latitude

In reality the theory applied here with a constant β and u is a little to over-simplified,
and a more correct treatment would make use of the dynamics in spherical coordi-
nates (as in e.g. Hoskins and Karoly, 1981). However, we can derive some properties
for an initially north-eastward propagating stationary Rossby wave here knowing
that β slowly deceases in the meridional direction. Let us conisder the stationary
Rossby wave 85

k2 + l2 = β/u . (84)

Let’s assume a wave generated by ENSO in the tropics moves north-eastward,
and that its zonal wave number is a constant. If we further take into account
that β decreases to the north with the cosine of the latitude, then the meridional
wave number l must decrease until it becomes 0. From this point the wave turns
southward again. The latitude in which this occurs is called turning latitude, and it
is an important property of stationary Rossby waves generated in the tropics. Try
to identify the turning latitude in Fig. 8.

We can go a step further, and let also the mean wind u depend on latitude, in
which case Eq. 84 has an additional terms:

k2 + l2 =

(
β − d2u

dy2

)

u
. (85)
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There are some metric terms missing in this equation, but this expression gives
a hint why a strong jet can modify stationary Rossby waves (the full correct ex-
pression can be found in Hoskins and Karoly, 1981). Strong jets are therefore also
able to modify the turning latitude and other properties of stationary Rossby waves.
Fig. 9 shows two examples of stationary wave number distribution in the merid-
ional direction versus the zonal wavenumber for regions with a strong jet (South
Asian/Western Pacific region; solid line) and one with a weaker jet (Eastern Pacific
region). North of a strong jet the turning latitude is reduced, and we get an effect
called waveguide, e.g. wave numbers 5 and 6 are essentially trapped in the region
between 25◦ and 35◦N. How do you determine the turning latitude in this graph?

Figure 8: Stationary Rossby wave induced by ENSO.
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Figure 9: Meridional profile of stationary wave number (Ks). From Master thesis
of Alessandro Raganato.

Exercises

1. Derive the group velocities for Rossby waves (77) and (78) and show that
for stationary Rossby waves fulfilling Eq. (85), the cgx component is always
positive.

2. Show that (83) is the solution of (80) with (81).

3. Using the linearized form of the potential vorticity equation (11) and the
β-plane approximation, derive the Rossby wave speed for a homegenous in-
compressible ocean of depth h. Assume a motionless basic state and small
perturbations that depend only on x and t,

u = u′(x, t), v = v′(x, t), h = H + h′(x, t) , (86)

where H is the mean depth of the ocean. With the aid of the continuity
equation for a homogeneous layer

∂h′

∂t
+H

∂u′

∂x
= 0 (87)

and the geostrophic wind relationship v′ = gf−1
0 ∂h′/∂x. Show that the per-

turbation vorticity equation can be written in the form

∂

∂t

(
∂2

∂x2
− f2

0

gH

)
h′ + β

∂h′

∂x
= 0 (88)
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and that h′ = h0e
ik(x−ct) is a solution provided that

c = −β(k2 + f2
0 /gH)−1 . (89)

If the ocean is 4 km deep, what is the Rossby wave speed at latitude 45◦ N for
a wave of 10000 km zonal wavelength?

4. Rossby-type waves can be generated in a rotating cylindrical vessel if the depth
of the fluid is dependent on the radial coordinate. To determine the Rossby
wave speed formula for this equivalent β effect, we assume that the flow is
confined between rigid lids in an annular region whose distance from the axis
of rotation is large enough so that the curvature terms in the equations can
be neglected. We then can refer the motion to cartesian coordinates with x
directed azimutally and y directed toward the axis of rotation. If the system
is rotating at angular velocity Ω and the depth is linearly dependent on y,

H(y) = H0 − γy , (90)

show that the perturbation (shallow water) continuity equation (dH/dt =
−H∇ · v) can be written as

H0

(
∂u′

∂x
+
∂v′

∂y

)
− γv′ = 0 (91)

and that the perturbation quasi-geostrophic vorticity equation is thus

∂

∂t
∇2ψ′ + β

∂ψ′

∂x
= 0 , (92)

where ψ′ is the perturbation geostrophic streamfunction and β = 2Ωγ/H0.
What is the Rossby wave speed in this situation for waves of wavelength 100
cm in both the x and y directions if Ω = 1s−1, H0 = 20 cm, and γ = 0.05?
(Hint: Assume that the velocity field is geostrophic except in the divergence
term.)

5. Solve the nonlinear potential vorticity conservation equation (19) using (22)
and including a Ekman pumping term reξ, re = 1/day numerically for a chan-
nel with the centre at 45◦N of Ly = 3 · 106 m meridional width and a zonally
periodic domains of a length of Lx = 2 · 107 m using a spatial discretization
of ∆x = ∆y = d = 1 · 105 m and a ∆t of 1 h. Assume that the top is fixed
at a height H = 1.2 ·104 m, so that the total height of the fluid is given by
h = H − ht. Let a sinusoidal mountain be if the shape

ht(x, y) = h0 sin(N2πx/Lx) sin(πy/Ly) ,

where h0 = 1 ·103 m, and let N (the number of the mountain waves in the
channel) be a) N=2 and b) N=8. The initial condition zonal flow, which,
expressed in streamfunction means

ψ(x, y, 0) = −10(y − Ly) .
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Compare the solutions for a) and b) (after 7 days) and especially compare the
position of the eddy streamfunction crests relative to the mountain crests for
both cases and interpret the results. Hint: Equation (19), with the condition of
a fixed upper height H and given lower topography, including Ekman pumping
terms can be written as

∂

∂t
ξ = F (x, y, t)−reξ = −

[
∂

∂x
(uξ) +

∂

∂y
(vξ)

]
−βv+

f0

h

[
∂

∂x
(uh) +

∂

∂y
(vh)

]
−reξ .

(93)
and

u = −∂ψ
∂y

(94)

v =
∂ψ

∂x
(95)

ξ = ∇2ψ , (96)

given that the quasi-geostrophic approximations (15) and (16) are valid. Note
that Eq. (93) can be written in its formulation because the geostrophic wind
(Eq. 94) is divergence free and the height does not depend explicitly on time.

Discretize the terms in Eq. (93) as (using an implicit discretization of the
Ekman damping)

ξ(t+ ∆t) = ξ(t) + ∆tFi,j(t)−∆treξ(t+ ∆t) (97)

with

Fi,j(t) = − 1

2d
[(ui+1,jξi+1,j − ui−1,jξi−1,j) + (vi,j+1ξi,j+1 − vi,j−1ξi,j−1)]− βvi,j

+
f0

hi+1,j

1

2d

[(ui+1,jhi+1,j − ui−1,jhi−1,j) + (vi,j+1hi,j+1 − vi,j−1hi,j−1)] (98)

where the right side is evaluated at the time t, where the fields are already
known. This leads to

ξ(t+ ∆t) = (ξ(t) + ∆tFi,j)/(1 + ∆tre) (99)

Knowing the vorticity, the streamfunction can be determined by Eq. (96),
which can be discretized as (see MMG lectures)

(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j)/d
2 = ξi,j . (100)

If we can solve this equation for ψi,j , we can derive the velocity fields by using
Eqs. (94), (95) in discretized form

ui,j = −(ψi,j+1 − ψi,j−1)/(2d) (101)

vi,j = (ψi+1,j − ψi−1,j)/(2d) (102)

(103)

A scheme how to solve the initial value problem is:
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(a) Given the initial condition ψi,j , (100) can be solved to determine ξi,j ,
(101) and (102) can be used to determine the velocities

(b) Evaluate Fi,j using Eq. (98).

(c) ξt+∆t can be determined by integrating (99).

(d) Knowing ξt+∆t, (100) can be inverted to calculate ψt+∆t

(e) Go back to (a).

Integrate this scheme for 7 days to reach a steady-state solution and plot the
eddy streamfunction and topography.
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