
2 Quasi-geostrophic motion

2.1 The basic equations in isobaric Coordinates

The basic governing equations are (see Eqs. 1 and 2)

The horizontal momentum equations

dv

dt
+ fk× v = −1

ρ
∇p , (33)

where v = iu+ jv and the nabla operator has just the horizontal components.
The vertical equation of motion degenerates for all large-scale motion (e.g. scales

more than 100 km) into the hydrostatic equation (discuss how good this approxi-
mation is):

∂p

∂z
= −ρg . (34)

Equation (34) states that there is a monotonic relation between pressure p and
height z, which leads to the possibility of using p as a vertical coordinate. The basic
equation for deriving all transformation from the height to the pressure coordinate
system is: ψ(x, y, p, t) = ψ(x, y, z, t), which leads, for example to

∂ψ

∂x
|p=

∂ψ

∂x
|z +

∂ψ

∂z

∂z

∂x
|p . (35)

Inserting ψ = p and applying Eq. (35) also to the derivative in y direction gives
the transformation for the horizontal pressure gradient force ∇zp = ρg∇pz = ρ∇pΦ.
Thus the horizontal momentum equation reads

dv

dt
+ fk× v = −∇pΦ . (36)

This looks a little like the horizontal momentum equation of the shallow water model,
but it is not! Applying ψ(x, y, p, t) = ψ(x, y, z, t) to a vertical derivative and letting
ψ = p gives the hydrostatic equation in pressure coordinates

∂Φ

∂p
= −1

ρ
= −α = −RT

p
. (37)

The total derivative d/dt is invariant and can be expressed as (as follows directly
from ψ = ψ(x, y, p, t))

d

dt
=

∂

∂t
+

∂

∂x

dx

dt
+

∂

∂y

dy

dt
+

∂

∂p

dp

dt
(38)

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
(39)

=
∂

∂t
+ v · ∇p + ω

∂

∂p
. (40)
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ω = dp/dt (called the ’omega’ vertical velocity) is the pressure change following the
motion. Note that when w is positive ω is typically negative.

The Continuity Equation

The easiest way to derive the continuity equation is through the principle of mass
conservation. For an infinitesimal mass element we may write:

δm = ρδV = ρδxδyδz = −δxδy 1

g
δp . (41)

Note that the first part of equation (41) is just the definition of the density. In the
second part the hydrostatic equation (34) has been used to replace the vertical per-
turbation by a pressure perturbation. Let’s calculate the derivative of (41) following
the motion (conservation of mass)

1

δm

d

dt
δm =

g

δxδyδp

d

dt

δxδyδp

g
= 0. (42)

After appying the product rule of differentiation, and changing the order of differ-
entiation we obtain

1

δx
δ
d

dt
x+

1

δy
δ
d

dt
y +

1

δp
δ
d

dt
p =

δu

δx
+
δv

δy
+
δω

δp
= 0 . (43)

Letting δx, δy, δz → 0, it follows the continuity equation in pressure coordianates:

(
∂u

∂x
+
∂v

∂y

)

p

+
∂ω

∂p
= 0 . (44)

In pressure coordinates the full continuity equation takes the form of that of an
incompressible fluid, i.e. the time derivative of density does not occur anymore
explicitely.

The Thermodynamic Energy Equation

Recall Eqs. 108 or 110 for the Enthalpy, and after multiplying with T from our
Earth System Thermodynamics course (for ds = 0), which was approximately valid
for the atmosphere in which phase transitions from water vapour to liquid water are
allowed (do you remember what the symbols Llv and mv stand for?):

cp
dT

dt
− RT

p

dp

dt
= −Llv

dmv

dt
. (45)

If we further allow diabatic processes to occur (e.g. radiation), then we can simply
add Tds/dt on the rhs and abbreviate those terms as Q.

cp
dT

dt
− αdp

dt
= Q . (46)
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Q is thus the heat added by diabatic processes (i.e. condensation, radiation).
Using the total derivative in pressure coordinates and the definition of ω we have

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)

p

− Spω =
Q

cp
, (47)

where the stability factor

Sp =
RT

cpp
− ∂T

∂p
= −T

θ

∂θ

∂p
(48)

has been introduced. In Eq. (48) we have used the definition of the potential
temperature (Exercise!)

θ = T

(
p0

p

) R
cp

. (49)

p0 is a constant reference pressure here. Using the dry adiabatic lapse rate Γd = g/cp,
we have also (excercise!)

Sp = (Γd − Γ)/(ρg) , (50)

where the definition of the lapse rate −dT/dz = Γ has been used.
The set of equations (36), (37), (44) and (47) is the basis for our analysis of

synoptic-scale motion, but also the basis for many numerical models of the atmo-
spheric circulation.

It is also useful to derive the approximate version of the potential vorticity 31 in
pressure coordinates, because it takes a more convenient form. We can write (e.g.
using ψ(x, y, p, t) = ψ(x, y, z, t) to evaluate a vertical derivative

∂θ

∂z
=
∂θ

∂p

∂p

∂z
= −ρg∂θ

∂p
. (51)

With this 31 becomes

qp =

[
ηp
∂θ

∂p

]
, (52)

where the constant factor −g has been excluded from the definition (this does not
matter, why?). Note, that the absolute vorticity ηp = k · ∇p × v + f is the verti-
cal component of the absolute vorticity and has to be evaluated on pressure levels.
The physical interpretation of the approximate potential vorticity in pressure coor-
dinates, qp, is that a fluid element within an isentropic flow may be considered as
confined between two potential temperature values ∆θ. The thickness of the fluid
element, ∆p, however, may change. If this occurs, then the absolute vorticity has
to adjust in order to maintain potential vorticity conservation.
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2.2 Some observed features of the extratropical mean flow

A primary goal of dynamic meteorology is to interpret the observed structure of
large-scale atmospheric motions in terms of physical laws governing the motions.
These laws, which express the conservation of momentum, mass, and energy com-
pletely determine the relationships among the pressure, temperature, and velocity
fields. However, the pure laws provide an enormously complicated picture of the
motions. For extratropical synoptic-scale motions, however, the horizontal veloci-
ties are approximately geostrophic. Such motions, which are often referred to as
quasi-geostrophic, are simpler to analyze than, for example, tropical disturbances.
They are also the major systems of interest in traditional short-range weather fore-
casting and are thus a reasonable starting point for dynamical analysis. In this
section we show that for extratropical synoptic-scale systems the twin requirement
of hydrostatic and geostrophic balance constrain the baroclinic motions so that to
a good approximation the structure and evolution of the three-dimensional velocity
field are determined by the distribution of geopotential height on isobaric surfaces.
The equations that express these relationships constitute the quasi-geostrophic sys-
tem. Before developing this system of equations it is useful to summarize briefly
the observed structure of mid-latitude synoptic systems and the mean circulations
in which they are embedded.

Zonally averaged cross sections do provide some useful information on the gross
structure of the planetary-scale circulation, in which synoptic-scale eddies are em-
bedded. Fig. 4 and 5 show the zonal mean meridional-vertical sections of tem-
perature (left) anomaly from zonal mean and zonal velocity (right) for northern
(December-to-February; DJF) and southern winter (June-to-August; JJA), respec-
tively. The vertical direction is measured in pressure (hPa). The average pole-
to-equator temperature gradient in the Northern Hemisphere troposphere is much
larger in winter than in summer. In the southern hemisphere the difference between
summer and winter temperature distributions is smaller, owing mainly to the large
thermal inertia of oceans together with the greater fraction of the surface that is
covered by oceans in the Southern Hemisphere. The zonal flow and the meridional
temperature gradients satisfy to a large degree the thermal wind relation (Exercise!),
the largest zonal wind speeds are located in upper levels in regions with the largest
meridional temperature gradients

∂ug
∂p

=
R

fp

(
∂T

∂y

)

p

. (53)

The core of maximum zonal wind speed (called jet stream axis) is located just
below the tropopause (the boundary between troposphere and stratosphere). In both
hemispheres the location is about 30◦-35◦ during winter and 40◦-45◦ during summer.

However, there are some important deviations from the zonal mean picture.
Fig. 6 shows the zonal wind distribution at the 200 hPa level. As can be seen the
largest wind speeds are concentrated just off the coast of Asia and North America,
where also the largest meridional temperature gradients occur. Also, whereas the
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Figure 4: Northern winter meridional-height sections of temperature deviations from
zonal mean (left) and zonal wind (right). Units are K for temperature and m/s for
wind.

pacific jet is quite zonal, the Atlantic one is clearly tilted from the south-west to the
north-east. It is in these regions where most extratropical cyclones and anticyclones
develop. I will be shown in section 4 that the mechanisms where these systems draw
energy from is the meridional temperature gradient due to an instability called
baroclinic instability. The systems propagate downstream along the storm tracks
that approximately follow the jet axis.

The large departure of the northern winter climatological jet stream from zonal
symmetry can also be inferred from examination of Fig. 7, which shows the DJF
mean 500 hPa geopotential contours (the z from Φ = gz in Eq. 36). Even after aver-
aging the geopotential height contours for one season, very striking departures from
zonal symmetry remain. These are clearly linked to the distribution of continents
and Oceans (for example orographic Rossby waves due to approximate barotropic
potential vorticity conservation [see section 1.3]).

The most prominent asymmetries are the throughs to the east of the American
and Asian continents. Referring back to Fig. 6, we see that the intense jet at 35◦

N and 140◦ E is a result of the semi-permanent trough in that region (that is the
isolines of height show strong gradient in that region).

Thus, it is apparent that the mean flow in which synoptic systems are embedded
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Figure 5: Southern winter meridional-height sections of temperature deviations from
zonal mean (left) and zonal wind (right). Units are K for temperature and m/s for
wind.

should really be regarded as a longitude-dependent time-averaged flow. In addition
to its longitudinal dependence, the planetary-scale flow also varies from day to day
owing to its interactions with transient synoptic-scale disturbances.

It is a common observation in fluid dynamics that jets in which strong velocity
shears occur may be unstable with respect to small perturbations. By this is meant
that any small disturbance introduced into the jets will tend to amplify, drawing
energy from the jet as it grows. Most synoptic-scale systems in mid-latitude appear
to develop as the result of an instability of the jet-stream flow. This instability, called
baroclinic instability, depends on the meridional temperature gradient, particularly
at the surface. Hence, through the thermal wind relationship, baroclinic instability
depends on vertical wind shear.

2.3 The Quasi-geostrophic approximation

The main goal of this chapter is to show how the observed structure of midlatitude
systems can be interpreted in terms of the constraints imposed on synoptic-scale
motions by the dynamical equations. Specifically we show that for equations that
are hydrostatic and nearly geostrophic the three-dimensional flow is determined
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Figure 6: Northern winter (DJF) 200 hPa zonal wind. Units are m/s.

approximately by the isobaric distribution of geopotential height [Φ(x, y, p, t)]. For
this analysis, it is convenient to use the isobaric coordinate system both because
meteorological measurements are generally referred to constant-pressure surfaces
and because the dynamical equations are somewhat simpler in isobaric coordinates
than in height coordinates. Thus, use of the isobaric coordinate system simplifies
the development of approximate prognostic and diagnostic equations.

2.3.1 Scale Analysis in Isobaric Coordinates

We consider the set of equations (36), (37), (44) and (47). In the following we will
drop the notation ()p to indicate derivatives at constant pressure, which is valid
in this section for all horizontal and time derivatives. The stability parameter is
positive [Sp ≈ 5 × 10−4 K Pa−1 in the mid-troposphere]. This set of equations,
although simplified by use of the hydrostatic approximation and by neglect of some
small terms that appear in the complete spherical coordinate form, still contains
terms that are of secondary significance for mid-latitude synoptic-scale systems.
They can be further simplified by the observation that the horizontal flow is nearly
geostrophic and that the ratio of the magnitudes of vertical to horizontal velocities
is of the order of 10−3.

We first separate the horizontal velocity into geostrophic and ageostrophic parts
by letting

v = vg + va , (54)

where the geostrophic wind is defined as

vg ≡ f−1
0 k×∇Φ , (55)

and va is just the difference between the total horizontal wind and the geostrophic
wind. Here we have assumed that the meridional scale, L, is small compared to the
radius of the earth so that the geostrophic wind may be defined using a constant
reference latitude of the Coriolis parameter (f ≈ f0 as in equation 15). Note that
the definition (55) implies that the geostrophic wind is non-divergent.
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Figure 7: Northern winter (DJF) 500 hPa zonal geopotential height. Units are
decametre.

For the systems of interest |vg| � |va|. More precisely,

|va|
|vg|
∼ O(Ro) ≈ 10−1 . (56)

The Rossby number Ro has been introduced in Eq. (7).
The momentum can then be approximated to O(Ro) by its geostrophic value, and

the rate of change of momentum or temperature following the horizontal motion can
be approximated to the same order by the rate of change following the geostrophic
wind. Thus, in the total derivative (40), v can be replaced by vg and the vertical
advection, which arises from ageostrophic flow, can be neglected. The rate of change
of momentum following the total motion is then approximately equal to the rate of
change of the geosptrophic momentum following the geostrophic wind:

dv

dt
≈ dgvg

dt
, (57)
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where
dg
dt

=
∂

∂t
+ vg · ∇ =

∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
. (58)

Note, however, that the vertical advection in the thermodynamic equation, 47, has
been combined already with the adiabatic expansion term to provide the stability
term Spω.

Although a constant f0 can be used in defining vg, it is still necessary to retain
the dynamical effect of the variation of the Coriolis parameter with latitude in the
Coriolis force term in the momentum equation. This variation can be approximated
by expanding the latitudinal dependence of f in a Taylor series about a reference
latitude φ0 and retaining only the first two terms to yield

f = 2|Ω| sinφ ≈ f0 + βy , (59)

that is the sinφ-dependence is approximated linearly for a given latitude φ0 by a
Taylor series expansion (therefore β = 2|Ω|cosφ0/a; a being the mean radius of
the earth). This approximation is usually referred to as mid-latitude beta-plane
approximation. For synoptic-scale motions the ratio of the first two terms in the
expression of f has the order of magnitude

βL

f0
≈ cosφ0

sinφ0

L

a
∼ O(Ro)� 1 . (60)

This justifies letting the coriolis parameter have a constant value f0 in the geostrophic
approximation and approximating its variation in the coriolis force term by (59).

From Eq. (36) the acceleration following the motion is equal to the difference
between the Coriolis force and the pressure gradient force. This difference depends
on the departure of the actual wind from the geostrophic wind. We can write, using
(54), (59) and (55)

fk× v +∇Φ = (f0 + βy)k× (vg + va)− f0k× vg

≈ f0k× va + βyk× vg . (61)

The approximate horizontal momentum equation thus has the form

dgvg

dt
= −f0k× va − βyk× vg . (62)

Since the geostrophic wind (55) is non-divergent, the continuity equation (44)
may be written as

∇ · va +
∂ω

∂p
= 0 , (63)

which shows that ω is only defined by the ageostrophic part of the wind field (i.e.
it is the ageostrophic wind that drives vertical motions that are relevant for energy
conversions!!!).
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In the thermodynamic energy equation (47) the horizontal advection can be
approximated by its geostrophic value. However, as mentioned above, the vertical
advection is not neglected, but forms part of the adiabatic heating and cooling term.
This term must be retained because the static stability is usually large enough on
the synoptic scale that the adiabatic heating or cooling owing to vertical motion
is of the same order as the horizontal temperature advection despite the smallness
of the vertical velocity. It can be somewhat simplified, though, by dividing the
total temperature field Ttot, into a basic state (standard atmosphere) portion that
depends only on pressure, T0(p), plus a deviation from the basic state, T (x, y, p, t)

Ttot = T0(p) + T (x, y, p, t) . (64)

Since |dT0/dp| � |∂T/∂p| only the basic state portion of the temperature field need
to be included in the static stability term and the quasi-geostrophic thermodynamic
energy equation may be expressed in the form

∂T

∂t
+ vg · ∇T −

(
σp

R

)
ω =

Q

cp
, (65)

where σ ≡ −RT0p
−1d ln θ0/dp and θ0 is the potential temperature corresponding to

a basic state temperatue T0 (σ ≈ 2× 10−6 m2 Pa−2 s−2 in the midtroposhere).
Equations (62), (55), (37), (63) and (65) constitute the quasi-geostrophic equa-

tions. If Q is known these form a complete set in the dependent variables Φ, T,vg,va
and ω.

2.4 The Quasi-Geostrophic Vorticity Equation

Just as the horizontal momentum can be approximated to O(Ro) by its geostrophic
value, the vertical component of the vortivity can also be approximated geostrophi-
cally. Using Eq. (55) the geostrophic vorticity ξg = k · ∇ × vg can be expressed in
terms of the Laplacian of the geopotential

ξg =
∂vg
∂x
− ∂ug

∂y
=

1

f0
∇2Φ . (66)

Equation (66) can be used to determine ξg(x, y) at any given time from a known
field Φ(x, y). Alternatively, (66) can be solved by inverting the Laplacian operator
to determine Φ from a known distribution of ξ provided that suitable conditions
on Φ are specified on the boundaries of the region in question. This invertibility
is one reason why vorticity is such a useful forecast diagnostic; if the evolution
of vorticity can be predicted, then inversion of Eq. (66) yields the evolution of
the geopotential field, from which it is possible to determine the geostrophic wind.
Since the Laplacian of a field tends to be a maximum where the function itself is a
minimum, positive vorticity implies low values of geopotential and vice versa (see
Fig. 7). We will use the invertibility to solve a problem numerically in section 3.

The quasi-geostrophic vorticity equation can be obtained from the x and y com-
ponents of the quasi-geostrophic momentum equation (62) and yields (exercise!)
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dgξg
dt

= −f0

(
∂ua
∂x

+
∂va
∂y

)
− βvg , (67)

which should be compared with Eq. (11). Thus the quasi-geostrophic vorticity
equation takes the form of the barotropic vorticity equation! Using (63), Equation
(67) can be re-written as

∂ξg
∂t

= −vg · ∇(ξg + f) + f0
∂ω

∂p
, (68)

which states that the local rate of change of geostrophic vorticity is given by the
sum of the advection of the absolute vorticity by the geostrophic wind plus the
concentration or dilution of vorticity by stretching or shrinking of fluid columns
(the divergence effect). The vorticity tendency owing to vorticity advection [the
first term on the right in Eq. (68)] may be rewritten as

−vg · ∇(ξg + f) = −vg · ∇ξg − βvg . (69)

The two terms on the right represent the geostrophic advections of relative vorticity
and the planetary vorticity, respectively. For disturbances in the westerlies, these
two effects tend to have opposite signs. In the upstream of a 500 hPa trough,
the geostrophic wind is directed from the negative vorticity maximum at the ridge
toward the positive vorticity maximum at the trough so that −vg · ∇ξg < 0. But at
the same time, since vg < 0 in that region, the geostrophic wind has its y component
directed down the gradient of planetary vorticity so that −βvg > 0. Hence, in
this region the advection of relative vorticity tends to decrease the local relative
vorticity, whereas the advection of planetary vorticity tends to increase the local
relative vorticity. Similar arguments (but with reversed signs) apply to a region
downstream a trough. Therefore, advection of relative vorticity tends to move the
vorticity and trough (and ridge) pattern eastward (downstream). But advection
of planetary vorticity tends to move the troughs and ridges westward against the
advecting wind field.

The net effect of advection on the evolution of the vorticity pattern depends
upon which type of advection dominates. Given a geopotential height wavy field,
the vorticity increases with the square of the wave number, so that the first term on
the right of Eq. (69) is larger for large wave numbers (i.e. short waves; typically Lx <
3000 km), while for long waves (Lx > 10000 km) the planetary vorticity advection
tends to dominate. Therefore, as a general rule, short wavelength synoptic-scale
systems should move eastward with the advecting zonal flow while long planetary
waves should tend to be stationary of move against the zonal advection. This will be
discussed in more details when we derive the dispersion relation for Rossby waves.

Vorticity advection does not alone determine the evolution of meteorological
systems. The orographic effects, for example seems to have vanished from Eq. (68).
But they are still present, because orography will lead to vertical motions that make
the second term on the right important.
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Exercises

1. Show that
RT

cpp
− ∂T

∂p
= −T

θ

∂θ

∂p
= (Γd − Γ)/(ρg)

using the definition of potential temperature, and dry adiabatic and actual
lapse rates.

2. Show that from (62) follows the quasi-geostrophic vorticity equation (67).
[Hint: apply ∂/∂x to the second component of Eq. (62) and substact ∂/∂y
applied to the first component of Eq. (62)].

3. Derive the thermal wind equation for u-component of the zonal wind (Eq. 53)
and also for the v-component in pressure coordinates using the geostrophic
relation 55.

4. Suppose that on the 500 hPa surface the relative vorticity at a certain location
at 45◦ N latitude is increasing at a rate of 3 × 10−6s−1 per 3 h. The wind
is from southwest at 20 m/s. and the relative vorticity decreases toward the
northeast at a rate of 4 × 10−6s−1 per 100 km. Use the quasi-geostrophic
vorticity equation to estimate the horizontal divergence at this location on a
β plane.

5. Given the following expression for the geopotential field:

Φ(x, y, p, t) = Φ0(p) + f0[−Uy + k−1V cos(πp/p0) sin k(x− ct)] , (70)

where U, V, c, k, p0 are constants, use the quasi-geostrophic vorticity equation
(68) to obtain an estimate for ω. Assume that df/dy = β is a constant (not
zero) and that ω vanishes for p = p0.
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