
15 Predictability Measures

15.1 Measures of model-derived predictability

Before we formally introduce the concepts of signal and noise in the seasonal
prediction context, let us first consider an example of a seasonal prediction in
Fig. 81.

Let xij be a model variable (e.g. near-surface temperature or rainfall) at a
certain gridpoint at a discretized time i = 1, ..., N for the ensemble member
j = 1, ...,M . The noise in weather and climate is then usually defined as the
variance of the deviations from the ensemble mean
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where [x]i is the ensemble mean
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We can obviously define these values at every gridpoint of the model and
thus define maps of e.g. NO. The meaning of this definition becomes clear
if we imagine that the results of an ensemble of 2 (or more) simulations are
identical. In this case the noise NO is zero. The ensemble mean of an ensemble
is supposed to define the signal, thus
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where [x] is the time mean of the ensemble mean
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It should be noted that the ensemble mean usually contains a noise residual,
particularly if the ensemble size is small, and provides therefore a biased esti-
mate of the signal. Imagine we have just 2 simulations, then it is clear that
the mean of these 2 simulations will not be effective to identify the signal
(unless they are identical, and therefore the noise is zero). There are ways to
correct/improve this, but we will not deal with this here. Discuss this using
ensemble Nino3.4 forecasts! With this the signal-to-noise ratio S−N is simply

S −N =
SI

NO
. (294)
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In principle, S−N can become infinity, if NO is zero. In practise this is usually
not the case, although values can become quite large (in which case we are
lucky!!!). A useful threshold to be considered could be S −N = 1, for which
the signal has the same variance as the noise, indicating some predictability.
In practical applications to important variables such as surface temperatures,
precipitation or geopotential height in seasonal forecasts, S −N turns out to
be typically small for precipitation and other variables outside the tropical
Pacific regions (see Fig. 82).

A useful transformation of the S−N is called theoretical limit of predictability
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where T = SI + NO is the total variance. By definition Rlimit lies between
0 and 1. It may be interpreted as maximum expected correlation skill if we
were to correlate the ensemble mean with the observations (correlation skill
will be introduced in the next section). Zero means there is no predictability,
1 means there is perfect predictability. A value of S−N of 1 translates into a
value of Rlimit of about 0.7. There are many more indicators of predictability,
that are related to information theory (e.g. relative entropy), but we will
restrict ourselfs here to just the basic ones. Fig. 83 shows the Rlimit for
seasonal mean (September-to-November) precipitation over land points. As
we can see, unfortunately the seasonal mean theoretical limit of Predictability
is typically low over land points. Another global assessment of Rlimit for
surface temperature, mean sea level pressure and precipitation for the DJF
season is shown in Fig. 84

Another, purely model derived predictability measure is the potential correla-
tion skill. The idea is to calculate some kind of mean correlation derived from
the model that may be compared with the correlation of an ensemble mean
with an observation. We may treat every single ensemble member of an en-
semble of realizations as observation (it contains internal and forced variability
components). We can correlate each ensemble member with an ensemble mean
of the remaining simulations. For example, we use xi1 and correlate this with
the ensemble mean
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This is because if xi1 were included in the ensemble mean calculation then
we get trivial correlations due to this. Then we can calculate M correlation
coefficients
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where the standard deviations in time are defined as
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Now one should average the correlations ρj . However, we should not just
average these correlations since they are limited by [-1,1]. Instead, we may
average them after applying a FischerZ-transformation
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to get
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After this, in order to get the average correlation, we have to transform back
using the inverse transformation

[ρ] =
e2[r] − 1

e2[r] + 1
. (302)

Note that, in practise, this potential correlation skill [ρ] is very similar numer-
ically to the theoretical limit of predictability, Rlimit. The reason for this is
that the square of a correlation is the explained variance, which applied to our
case is the explained variance fraction by the ensemble mean or by the signal.
An example if a Potential Correlation Skill calculation is shown in Fig. 85.

15.2 Predictability from comparison with observations

Of course, in order to investigate the ’goodness’ or skill of a model simulation,
we should compare the model output with observations. There are a number
of quality measures of a model simulation. The most basic one, perhaps, is
the bias of the model. If the model has several realizations, that is, ensemble
members, the (time-mean) bias is best evaluated by comparing the ensemble
mean of a field, [x]i, with the corresponding observation, oxi

bias =
1

N

N∑

i=1

([x]i − oxi) . (303)
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If an ensemble is not available, but just a single simulation, the single simu-
lation can be used to assess the bias. One of the most commonly used mea-
sures of error that takes variability into account is the Root-mean-square error
(RMSE)
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Again, a single realization may be also used to evaluate the RMSE of a model.
The problem with the RMSE is that we need to know what is an acceptable
value of it, which can be quite tricky. In a forecast for a week, is a RMSE of
1 K acceptable? A more generically comparable predictability measure is the
Correlation Skill

ρ =
1
N

∑N
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σoxσ[x]
. (305)

Such a measure may be somewhat simpler to evaluate as is has values between -
1 and 1 and we may simply pick a generic threshold of, e.g. 0.5, for any variable.
On the other hand, physically me may prefer the RMSE error measure (for
example if your model has variations that are a factor of 1000 smaller than
the observations, the Correlation Skill may still be 1, but the RMSE would
be large). In order to better evaluate the RMSE we should compare it with
some kind of trivial forecast without real skill. Such a forecast could be a
climatological forecast or a persistence forecast. The Brier Skill Score uses
this idea to define skillful forecasts

BS = 1− RMSE2

RMSE2
cl

, (306)

where RSMEcl is the base-line RMSE of, for example a climatological fore-
cast. A forecast is skillfull (compared to the base-line forecast) is the BS is
positive.

An advantage of the Correlation Skill measure, ρ, is that we can directly
compare it with the model-derived potential correlation skill [ρ] (Eq. 302)
or the theoretical limit of predictability, Rlimit (Eq. 295). Fig. 86 shows
an example of real seasonal prediction skill from a multimodel ensemble of
seasonal hindcasts

15.3 Some other useful and simple techniques

A very useful technique in climate research is the regression analysis. Assume
we want (in a model or in observations) investigate what is the influence of
ENSO (or any other phenomenon) on rainfall. Assuming that we can char-
acterize ENSO by a single time-series (i.e. the Nino3.4 SST index), then the
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influence of ENSO on rainfall at a certain location may be determined by a
linear regression of rainfall at time i, ri onto the Nino3.4 index (Ii)

ri = a+ bIi . (307)

In the linear regression we are looking now for the coefficients a and b that
minimize the sum of the squared differences between the linear model, Eq.
(307), and the observational (or numerical model) counterpart roi

ε =
1

N

N∑

i=1

(roi − ri)2 (308)

The theory of the linear regression tells us now how to determine (exercise!)
the coefficients a and b (see Fig. 87). The mostly used coefficient b can be
expressed as

b =
1
N

∑N
i=1(roi − ro)(Ii − I)

σ2
I

. (309)

Thus b can be interpreted as covariance between the index Ii and roi, divided
by the variance of Ii.

Note that this formulae can be evaluated at every gridpoint, leading to a map
of regression coefficients. The map of the coefficients b would tell us what is
the typical linear response to a 1 K Nino3.4 SST anomaly in global rainfall
(the dimension is mm/day per K). Also note that sometimes a different scaling
is used

b∗ =
1
N

∑N
i=1(roi − ro)(Ii − I)

σI
, (310)

so that the dimension of b∗ is simply mm/day. This would be the result if we
had taken from the beginning a normalized index I∗i = (Ii − I)/σI which has
standard deviation 1 by definition. Thus b∗ is simply the covariance between
the normalized index Ii and roi. This may be interpreted as the response
to a normalized index Ii or the response to one standard deviation of the
regression coefficient. One may interpret this also as a composite map based on
linear regression. If we have an ensemble of simulations we could, for example,
compare the ENSO regression map of the ensemble mean onto global rainfall
with the observed regression map and try to identify if there are errors in the
ENSO teleconnections.

A comparision between observations and an AGCM for the b∗ regression coef-
ficients for the Nino3.4 index regression onto winter (December-to-February)
mean precipitation is shown in Fig. (88).
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Figure 81: An exampe of Nino3 and Nino3.4 SST index prediction to illustrate the
Signal-to-Noise ratio concept.
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Figure 82: Signal-to-Noise ratio for winter (December-to-February) mean derived
from an AGCM ensemble. Upper panel: Precipitation, lower pane: 200 hPa geopo-
tential height. From paper: Ehsan et al., 2013: A quantitative assessment of changes
in seasonal potential predictability for the 20th century. Clim Dyn, 41, 2697-2709,
doi: 10.1007/s00382-013-1874-x.
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Figure 83: Theoretical limit of predictability, Rlimit for September-to-November
mean precipitation derived from an AGCM ensemble. From paper: Bahaga et al.,
2015: Potential predictability of the sea-surface forced Equatorial East African short
rains interannual variability in the 20th century. Q. J. R. Meteorol. Soc., 141, 16-26,
doi: 10.1002/qj2338.
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Figure 84: Theoretical limit of predictability, Rlimit for December-to-Februar mean
a) surface temperature, b) mean sea level pressure and c) precipitation for the DJF
season derived from an AGCM ensemble. From Thesis: Bianca Mezzina, 2016:
Seasonal influences of SST variability on European climate. University of Trieste
Master thesis. 150



Figure 85: Potential Correlation Skill of near-surface temperature for winter
(December-to-February) mean derived from an AGCM ensmemble. From paper:
Ehsan et al., 2013: A quantitative assessment of changes in seasonal potential pre-
dictability for the 20th century. Clim Dyn, 41, 2697-2709, doi: 10.1007/s00382-013-
1874-x.

Figure 86: Correlation Skill of seasonal mean (September-toNovember) precipitation
from a multimodel seasonal forecast enssemble. From paper: Bahaga et al., 2015:
Assesment of prediction and predictability od short rains over equatorial East Africa
using a multi-model ensemble. Theor. Appl. Climatol. , doi: 10.1007/s00704-014-
1370-1.

151



Figure 87: Linear regression method.
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Figure 88: Regression coefficients b∗ of the Nino3.4 index onto winter (Dececmber-to-
February) mean precipitation. a) Obseravtinos, b) AGCM. Units are mm/day. From
paper: Kucharski et al., 2015: On the need of intermediate complexity General Cir-
culation Models: A “SPEEDY” Example. BAMS, 94, 25-30, DOI: 10.1175/BAMS-
D-11-00238.1.
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