
13 Analysis of Climate Variability: EOF/PCA Analysis

Suggested textbooks:

a) Statistical Methods in the Atmospheric Sciences. D. S. Wilks, Second Edition,
International Geophysics Series, Academic Press, 2006

b) Statistical Analysis in Climate Research. H. von Storch and F. W. Zwiers,
Cambridge University Press, 1999

c) Analysis of Climate Variability. H. von Storch, A. Navarra (Eds.), Springer,
1995.

d) Or simply look things up on Wikipedia...............

13.1 Motivation

The problem and necessity of the analysis of climate variability becomes clear if we
consider the series of 500 hPa winter mean anomaly fields shown in Fig. 71. Lacking
a precise theory of what we are seeing (apart from the fact that we know that what
we see are solutions of the complex Navier-Stokes equations), how can we try to find
some order in the chaos that we are confronted with? One way to tackle this problem
is the Empirical Orthogonal Function (EOF) analysis (guess who introduced this in
climate analysis?) or Principle Component Analyisis (PCA).

13.2 What does the EOF analysis do?

The EOF analysis solves our problem (how, see below) by finding orthogonal func-
tions (EOFs) to represent a time series of horizontal fields in the following way:

Z ′(x, y, t) =
L∑

l=1

PCl(t)EOFl(x, y) . (273)

Z ′(x, y, t) is the original (anomaly) time series as a function of time (t) and (hori-
zontal) space (x,y), for example the fields that are displayed in Fig. 71. EOFl(y, x)
show the spatial structures of the major factors that can account for the tempo-
ral variations of Z ′. PCl(t) are the principal components that tell you how the
amplitude of each EOF varies with time. In practice, time and space dimensions
are discretized (as in the Numerical Methods Course!). Therefore, dealing with
Z ′(x, y, t) and EOFl(y, x) means to deal with matrices.

13.3 Some useful specific definitions and notations

In the following, matrices will be denoted by capital boldface roman letters (A,B,
Y, etc.). Vectors will be denoted by a lowercase boldface letters. Let’s consider the
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data matrix:

Z =




z11 z12 . . . z1k

z21 z22 . . . z2k
...

...
...

zn1 zn2 . . . znk




(274)

In the following we assume that time and space are discretized and time is rep-
resented by the columns of this matrix, whereas space is represented by the rows
(space (x,y) is just discretized a one vector, i.e. order f(i, j) as one long vector
f(i, 1), f(i, 2), ..., f(i,M), i = 1, N, with N ×M = k). EOF analysis is based on
anomalies, therefore anomaly data has to be defined. In order to define anomalies,
a mean has to be defined. This is done in time, meaning a k-dimensional vector of
means can be defined by averaging along the columns of the matrix of Eq. 274 (i.e.
the time mean at every grid point). This mean has to be subtracted at every time
and gridpoint in order to define the anomaly matrix. The mean subtracted is in
general different at different gridpoints, but must be the same at a fixed gridpoint.
An elegant way to write this is:

Z′ = Z− 1

n
1 Z , (275)

where 1 is a n×n matrix that contains 1 everywhere which is multiplied with Z (to
confirm, simply try this procedure with a 2x2 matrix!).

With these notations Equation 273 may be re-written in (discretized) matrix
notation as

Z′ =
k∑

l=1

pcl el
T , (276)

where pcl is a nx1 vector and el is a kx1 vector, therefore the transponse el
T is a

1xk vector. Note that the product of an arbitrary nx1 vector a and a 1xk vector
bT is results in

abT ≡




a1

a2
...
an




[
b1, b2, . . . , bk

]
≡




a1b1 a1b2 . . . a1bk
a2b1 a2b2 . . . a2bk

...
...

...
anb1 anb2 . . . anbk




(277)

If we demand the vectors el to be orthogonal unit vectors, such that eTi ej = 0
for j 6= j, and eTl el = 1, then we have

Z′em =
k∑

l=1

pcl el
Tem =

k∑

l=1

pcl δlm = pcm , (278)

where δlm = 1 if l=m and zero otherwise. We call Z′em the projection (or in climate
analysis sometimes called regression) of the data matrix onto the subspace defined
by the EOF em. Thus the principle components corresponding the mth EOF can
simply be derived by projection of the data matrix Z′ onto the mth EOF. The vector
pcm has therefore n components.
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13.4 Minimum criterium leading to EOF definition

EOF analysis can be interpreted as a recursive process, we start to determine the
first EOF (e1), then the second, and so on. The criterion to determine the first EOF
is the minimization of the residual

ε1 =‖ Z′ − Z′e1e
T
1 ‖2 , (279)

with respect to the k dimensional vector e1 designing the first EOF in our notation.
Here, if Y is any matrix,

‖ Y ‖2=
1

(nk)
YT : Y ≡ tr

(
1

(nk)
YTY

)
=

1

(nk)

n∑

i=1

k∑

j=1

y2
ij . (280)

This means first the matrix product of YT and Y, then the trace of the resulting
matrix by summing up the diagonal elements and this is the total variance of Y.
The normalization by (nk) is arbitrary, but represents the natural definition of the
total variance. In some cases you may find that the normalization is just done by n,
meaning in time. The final results is however independent of this. The meaning of
Eq. 279 is that we are searching for a k- dimensional subspace e1 to represent the
data such that the residual (279) is minimal.

Note that Z′e1 is a n-dimentional vector to be matrix multiplied by the k-
dimentional vector eT1 to give a kxn matrix according to Eq. 277. Also note that
Z′e1 is just the definition of the vector of (discretized) Principle Components corre-
sponding to the first EOF in Eq. 276. Some further manipulation leads to:

ε1 =‖ Z′ ‖2 − ‖ Z′e1 ‖2 , (281)

which means that minimizing ε1 according to Eq. 279 with respect to e1 is equivalent
to maximizing the principle component projections

εproj =‖ Z′e1 ‖2 (282)

with respect to e1 (see, e.g. Wikipedia). This leads to the often used 2-dimensional
example of the geometrical interpretation of EOFs shown in Fig. 73, where samples
of 2-dimensional data vectors are considered and we search for the unit vector (EOF)
that maximizes the variance of the projection of the data on this vector (straight
line).

The minimization (a lot of matrix calculus) leads to the eigenvalue problem

Se1 = λe1 , (283)

where λ is the largest eigenvalue and S = 1
nkZ′TZ′ is the kxk variance-covariance

matrix of the anomalies. Therefore the first EOF e1 becomes the eigenvector of the
matrix S corresponding to the largest eigenvalue. The other EOFs are found by
simply iteratively minimizing the reduced residual

ε2 =‖ Z′ − Z′e1e
T
1 − Z′e2e

T
2 ‖2 ′ (284)
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and
εl =‖ Z′ − Z′e1e

T
1 − Z′e2e

T
2 − ...− ele

T
l ‖2 , (285)

and the results is that e2 is the eigenvector of S that corresponds to the second
largest eigenvalue, and el is the eigenvector of S that corresponds to the lth largest
eigenvalue. Since S has k eigenvectors we can continue this until l=k.

13.5 Some further properties

Note that also the principal components are orthogonal, that is pci · pcTj = 0 for
j 6= j. For practice purposes, we hope that a good approximation for the data
matrix is given by

Z′ ≈
N∑

l=1

pcl el
T , (286)

with N � k.
A further property is

k∑

l=1

λl =
1

(nk)
Z′T : Z′ =

1

(nk)

n∑

i=1

k∑

j=1

z′2ij , (287)

which means that the sum of all eigenvalues gives the trace of the variance-covariance
matrix S which is the total variance of Z′ . To evaluate the importance of EOFs it
is useful to consider the portion of variance explained by it:

expl var of λi =
λi∑k
l=1 λl

(288)

A further property of eigenvalues of a matrix is of importance for the practical
implementation of the EOF analysis, and is indeed used in the fortran program that
you will use in the exercises of this section: If λ is an eigenvalue of the variance-
covariance matrix kxk Z′TZ′ (we drop the scaling 1/(nk) for here because it is just
a factor), then it is also an eigenvalue of the nxn matrix Z′Z′T . In this case the
variance-covariance matrix is defined as by the spatial variances and covariances.
Thus if n � k, then we may prefer to find the eigenvalues of Z′Z′T . If there are
m independent eigenvectors (e1, e2, ..., es) of Z′TZ′ the eigenvectors of Z′Z′T are
Z′e1,Z

′e2, ...,Z
′es, which are the projections of the data matrix on the EOFs es

which are therefore the (normalized) principal components of the original prob-
lem. This means that EOFs and principal components are exchangable. Instead of
calculating the eigenvectors of Z′TZ′, we may calculate the eigenvectors of Z′Z′T ,
interpret the eigenvectors as the principal components and calculate the EOFs as
projections of the transpose data matrix Z′T onto the eigenvectors: el = Z′Tpcl.
In this case the principal components are normalized (that is standard deviation =
1), whereas the EOFs are not. In the approximation 286 it does not matter if the
principle component or the EOF is normalized, because they are multiplied with
each other.
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As stated above EOFs are found by determining the eigenvalues and eigenvectors
of the variance-covariance matrix. Do you remember how to find these? You have
to demand that the determinant of the variance-covariance matrix vanishes, this
leads to an equation, the characteristic equation that contains kth-order polynomials
and has at most k roots. There are standard techniques to find eigenvalues and
eigenvectors, you may have learned some in your Numerical Methods course?

13.6 Geometric interpretation of PCs and EOFs

The geometric interpretation of the principle components mentioned before is as
follows: The eigenvectors empirical orthogonal function (EOF) define a new coordi-
nate system in which to view the data. This coordinate system is oriented such that
each new axis is aligned along the direction of the maximum joint variability of the
data, consistent with that axis being orthogonal to the preceding one.

The goal is to account for the variation in a sample in as few variables as possible.
In the example here, the data is essentially 1-dimensional in the new coordinate
system defined by the EOFs.

13.7 Interpretation of EOFs

As we have learned by now, EOFs may be useful to compress the information con-
tained in complex data sets and to structure the data (according to the largest
variances). As for the physical interpretation of EOFs, it is tempting to try to give
physical explanations to the first few EOFs of a complex data set. Indeed, we expect
that if the variability of our fields are governed by a strong low-dimensional physical
mechanism (e.g. ENSO in the Pacific region), then one of the first EOFs will reflect
this mechanism (indeed in case of EOFs of the interannual variability in the tropical
Pacific, we find that the first EOF reflects the canonical ENSO pattern). Unfortu-
nately, the opposite is not true: Not every first (or second or third, ...) is related to
a simple and unique physical mechanism! Furthermore it is often even misleading
to try to provide a physical mechanism for higher EOFs (e.g. EOF4, EOF5, etc.),
because of the orthogonality of the EOFs. This constraint may make higher EOFs
less ’physical’ than the first or second EOF! The EOF analysis applied to the fields
in Fig. 71 gives as first 2 EOFs the maps displayed in Fig. 74. Do you have ideas
about possible ’physical’ explanations of these EOFs? They are at least well know
patterns, do you know their names?

13.8 Related Methods of Climate Analysis

The EOF analysis is probably the most basic of all analysis methods of climatic
fields. For example a different question could arise considering 500 hPa geopotential
height fields and sea surface temperature fields together. We may ask the question
are the 500 hPa fields and the sea surface temperature (SST) fields we see related?
This could be due to the fact that one is forcing the other. We may get some idea
performing an EOF analysis on both fields separately and then try to connect the
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emerging EOFs by a physical interpretation (e.g. similar to what we will do in the
exercise in this section). We could go one step further and compare (e.g. correlate)
the principle components (pcs) of the first EOFs, etc. If we are lucky and the pcs are
highly correlated, then there is likely some physical connection between the two first
EOFs. However, it could also be that the first pc in geopotential height is a little
correlated with the first pc in SSTs and also a little with the second, and so on. This
means our interpretation of the connections between 500 hPa geopotential height
and SST fields are not much easier after the EOF analysis. There are methods
to address this question systematically. For example, the Canonical Correlation
Analysis (CCA) or Maximum Covariance Analysis (MCA) provide tools to address
the question stated above in a systematic way.

Exercises

1. Using the fortran programme provided, calculate the (winter-mean: DJF)
EOFs of a) surface temperature and b) 200 hPa geopotential height in the
tropical Pacific. Display the covariance of the resulting principal components
related to the first EOF with the global surface temperature and 200 hPa
geopotential height fields and interpret the results. How much variance does
the first EOF explain in each case? Are the first EOFs of surface temperature
and 200 hPa geopotential height related? If yes, what could be the physical
mechanism?
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Figure 71: Anomalies of winter 500 hPa height fields for several years. Units are m.
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Figure 72: A typical example of the distribution of eigenvalues.

Figure 73: A sample of n observations in the 2-D space x = (x1, x2).
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Figure 74: EOFs of the 500 hPa fields presented in Fig . 71
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