
List of Figures

5.1 An idealized boundary layer. The boundary layer has thickness
δ, within a typical vertical scale H and typical velocity U, which
varies rapidly within the boundary layer in order to satisfy the
rigid lid boundary condition. [from Vallis (2006)] . . . . . . . . . 10

5.2 Meridional Ekman volume transport, -τx/( f ρ0), from QuickSCAT.
14

5.3 (a) Meridional Ekman volume flux, -τx/( f ρ0), for each of the
world oceans as a function of latitude. Note the maximum of VE at
about 45◦N and the changeover between westerlies and easterlies
at about 30◦N. (b) Vertical Ekman volume flux, we, for the world’s
oceans (see also Levitus, 1988). . . . . . . . . . . . . . . . . . . 15

5.4 The directions, for the northern hemisphere, and magnitude of
the steady Ekman mass transports in the atmosphere and oceanic
boundary layers when stress at the surface has the direction shown.
Note that the sum of the atmospheric and oceanic Ekman mass
transports is zero. When there is no pressure gradient, the force
per unit area exerted by the surface stress on each boundary layer
is equal to the product of mass per unit area and the Coriolis ac-
celeration of the layer. The latter quantity is f times the Ekman
mass transport and is directed at right angles to the stress. [from
Gill (1982)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 The idealized Ekman layer solution at the bottom for vg = 0.
[from Vallis (2006)] . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.6 A bottom Ekman layer, generated from an eastward geostrophic
flow above. An overbar denotes a vertical integral over the Ek-
man layer. so that − f × uE is the Coriolis force on the vertically
integrated Ekman velocity. ME is the frictionally induced bound-
ary layer transport, and τ is the stress. [from Vallis (2006)] . . . 21

1



5.7 An idealized Ekman spiral in the southern hemisphere ocean, driven
by an imposed wind stress. The net transport is at right angles to
the wind, independent of the detailed form of the friction. The an-
gle of the surface flow is at 45◦ to the wind (only for a Newtonian
viscosity). [from Vallis (2006)] . . . . . . . . . . . . . . . . . . . 24

5.8 An idealized Ekman velocity spiral. . . . . . . . . . . . . . . 25

5.9 Climatological zonal and meridional wind stress from QuickSCAT. 27

5.10 Climatological wind stress curl and Ekman pumping velocity, we
(m/year), from QuickSCAT. It is positive in the subtropical re-
gions on the order of 20-50 m per year and mostly negative over
the subpolar regions. Towards the equator, f goes to zero, and
Ekman pumping and Ekman transport become ill-defined. . . . . 28

5.11 The direction of Ekman pumping and suction is responsible for
the odd bi-modal shape of the ocean’s density anomaly. . . . . . . 29

5.12 Section through a cyclonic wind over the ocean. The geostrophic
wind gives a cyclonic rotation around the low-pressure center.
The Ekman mass transport in the atmospheric boundary layer is
inward, bringing mass to fill the low, and the associated vertical
pumping velocity is therefore upward. The Ekman mass transport
in the oceanic boundary layer is equal and opposite to that in the
atmosphere, so there is an outward mass transport and upward
pumping velocity in the ocean. This tends to raise the thermo-
cline. The upper Ekman layer in the ocean is primarily driven
by an imposed wind stress, whereas the lower Ekman layer in the
ocean largely results from the interaction of interior geostrophic
velocity and a rigid lower surface [from Vallis (2006) and Gill
(1982)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.13 Ekman transport divergence near the equator driven by easterly
trade winds. (a) Ekman transports. (b) Meridional cross-section
showing effect on the thermocline and surface temperature. (c)
Coastal upwelling system due to an alongshore wind with offshore
Ekman transport ( f > 0). The accompanying isopycnal deforma-
tions and equatorward eastern boundary current and poleward
undercurrent are also shown. [from Talley et al. (2011)] . . . . . . 33

5.14 A false-color image depicting chlorophyll-a concentration as mea-
sured from the SeaWIFS satellite data. Eastern Boundary Up-
welling systems (EBUS) regions (California, Peru, Canary and
Benguela) are shown by the pink ovals. . . . . . . . . . . . . . . . 34

Page 2



5.15 Time-mean (1985-2004) SST bias for (a) CMIP5, (b) CMIP6 and
(c) HighResMIP multi-model mean relative to OISST. Every con-
tour represents an SST bias of 1 K. Black dots show regions where
all models agree on the sign of the bias. The poles are excluded in
order to highlight the biases in the EBUS regions, which present
the highest SST anomalies. The 4 major EBUS are: the Califor-
nia Current System (CCS), the Canary Current System (CaCS),
the Humboldt Current system (HCS) and the Benguela Current
System (BCS). [from Farneti et al. (2022)] . . . . . . . . . . . . . 35

6.1 A schematic of an idealized wind-driven Ekman pumping on a β-
plane for a homogeneous ocean of depth H, resulting in a simple
model for midlatitude ocean circulation. . . . . . . . . . . . . . . 40

6.2 Wind stress curl computed from QuickSCAT reanalysis [https://doi.org/10.1175/2008JPO3881.1]. 43
6.3 Estimate of Sverdrup transport computed from QuickSCAT as

v = curlzτ̃/β. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4 Sverdrup balance circulation ( f > 0). [from Talley et al. (2011)] . 50
6.5 Estimate of the depth-integrated circulation (in Sv) predicted by

the Sverdrup balance in the North Atlantic and the North Pacific
computed with QuickSCAT winds. The solution assumes that
the depth-integrated circulation vanishes at the eastern bound-
ary. Positive values (red) correspond to clockwise circulations and
negative values (blue) to anticlockwise circulations. . . . . . . . . 52

6.6 Streamfunction ψ (Sv ≡ 106 m3 s−1) calculated from the Sver-
drup relation and a climatological wind stress curl. Westward
integration starts at 30◦ E with ψ = 0 as boundary condition.
[from Olbers et al. (2012)] . . . . . . . . . . . . . . . . . . . . . 53

6.7 Two possible Sverdrup flows, ψI , for the given wind stress. Each
solution satisfies the no-flow condition at one boundary, either
east or west. Both solutions have the same meridional interior
flow. Which one is physically plausible? [from Vallis (2006)] . . . 56

6.8 Two possible boundary solutions. Only the one on the western
side decays towards the interior and satisfies the condition that
φ = 0 in the interior. The solution requires that α > 0 and x = εα. 57

6.9 Solutions of the Stommel model for a single-gyre wind-induced
flow for different values of ε. Note that for ε=0 the model reduces
to the Sverdrup balance. . . . . . . . . . . . . . . . . . . . . . . 59

6.10 Solutions of the Stommel model for a single-gyre wind-induced
flow for different values of ε. Plotted are the streamfunction ψ
and the meridional velocity v = ∂ψ/∂x at the centre of the gyre. . 59

Page 3



6.11 Streamfunction ψ (in Sv) computed from the Stommel model with
realistic wind stress curl and a boundary layer width δ = 100 km.
[from Olbers et al. (2012)] . . . . . . . . . . . . . . . . . . . . . 60

6.12 Stommel’s wind-driven circulation solution for a subtropical gyre
with trades and westerlies. (a) Transport streamfunction ψ on a
uniformly rotating Earth ( f = f0) and (b) westward intensifica-
tion with the β-effect ( f = f0 + βy). [from Stommel (1948)] . . . 61

6.13 (left panels) Streamfunction ψ and (right panels) sea-surface height
η for a symmetrical gyral wind field (à la Stommel). In the case
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Chapter 5
Frictional Dynamics

So far we have dealt with frictionless flows, where the dominant balance is
between the Coriolis and pressure gradient forces. That was shown to be a
rather good approximation for flows away from boundaries (topography,
surface of the ocean, side boundaries, etc.) but this balance does not hold
anymore when a boundary is approached, and frictional forces become
important. The region where frictional terms have to be taken into account
is called a boundary layer (see Fig.5.1). Here we will consider the following:

• The boundary layer is Boussinesq.

• The boundary layer has a finite depth, δ, that is less than the total
depth of the fluid, H. The depth is given by the level at which fric-
tional stresses vanish. Within the boundary layer, frictional terms are
important, whereas geostrophic balance holds beyond it.

• Nonlinear time-dependent terms in the equations of motion are neg-
ligible, hydrostasy holds in the vertical, and buoyancy is constant,
not varying in the horizontal.

In atmosphere and ocean dynamics, where the focus is on rapidly ro-
tating turbulent fluids, this boundary layer is called Ekman layer.
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Figure 5.1: An idealized boundary layer. The boundary layer has thickness δ,
within a typical vertical scale H and typical velocity U, which varies rapidly
within the boundary layer in order to satisfy the rigid lid boundary condition.
[from Vallis (2006)]

The Ekman Layer
The development of the theories for the wind-driven circulation ac-
tually has as a foundation the discovery of the so-called Ekman layer
and its circulation. In 1898, the polar explorer Nansen observed that
icebergs in the Arctic drifted in a direction to the right of the direc-
tion of the surface winds, roughly bewteen 20◦ and 40◦ to right of
the wind stress. This qualitative observation can be explained by
the presence of frictional forces. In fact, wind force applied to the
surface of the ocean will try to transmit momentum in the same di-
rection. However, as soon as the fluid starts to move, the Coriolis
force will come into action deflecting its movement to the right. Im-
portantly, there is also a frictional force within the fluid that will
exert some resistance to this movement, and its direction is opposite
to the direction of the fluid. The final balance between wind force,
Coriolis and frictional forces, will determine the actual direction and
velocity of the fluid, which will be to the right of the wind direction
in the northern hemisphere.
As we shall see later, Ekman explained quantitatively how the ro-
tation of the earth was responsible for the deflection of the current
which Nansen observed.
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5.1 Equations of motion

Let us now include frictional effects in our equations of motion
D u
D t
− f v = −1

ρ 0

∂p
∂x

+ Fx (5.1)

D v
D t

+ f u = −1
ρ 0

∂p
∂y

+ Fy (5.2)

(5.3)

Here, Fx and Fy are the friction components per unit mass. Assuming no
accelerations in the fluid we are left with a balance between three forces

− f v = −1
ρ 0

∂p
∂x

+ Fx (5.4)

f u = −1
ρ 0

∂p
∂y

+ Fy. (5.5)

We can now make progress on the frictional terms. For a geophysical fluid,
the vertical component dominates. The Newton’s law of friction states that
the friction stress τ, which is the force per unit area, is given by

τ = µ
∂u
∂z

= ρ0ν
∂u
∂z

= ρ0Az
∂u
∂z

, (5.6)

where µ is the dynamic viscosity and ν = µ/ρ0 the kinematic viscosity.
For a turbulent fluid such as the ocean, eddy viscosity Az (coming about
from the Reynolds stresses −u′w′ = Az∂u/∂z) has a value ∼ 10−1 m2 s−1.

The eddy friction stress can be expressed in terms of a mass of fluid,
where for the vertical component leads to frictional force per unit mass

1
ρ 0

∂τ

∂z
=

1
ρ 0

∂

∂z

(
ρ0Az

∂u
∂z

)
= Az

∂2u
∂z2 . (5.7)

Our equations of motion thus reduce to

− f v = −1
ρ 0

∂p
∂x

+ Az
∂2u
∂z2 (5.8)

f u = −1
ρ 0

∂p
∂y

+ Az
∂2v
∂z2 . (5.9)

Or simply

f× u = −1
ρ 0
∇z p + A

∂2u
∂z2 . (5.10)

The momentum equation in the vertical is the hydrostatic balance, and
the set is completed with mass continuity, ∇ · u = 0.
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The Ekman number

We now apply the usual scaling arguments to the equations and obtain the
Ekman number

Ek =
( A

f0H2

)
, (5.11)

which determines the importance of frictional terms in the horizontal equa-
tions. For interior flows, Ek < 1, and the flow is geostrophic. Within the
Ekman layer, Ek ≥ 1, and friction is important. The difference between the
geostrophic equations and the equations of motion when frictional effects
are retained is thus clear.

This implies that the vertical velocities w are not negligible within the
boundary layer, near the sea surface and bottom. Friction terms are small
enough to be neglected only in the interior of the ocean. If we do not
neglect the friction term in the momentum equation this means that the
friction term is comparable in size to the Coriolis term

Az
∂2u
∂z2 ' f u (5.12)

A scaling analysis reveals that

Az(U/H2) ' f U (5.13)

For typical values Az = 10−1 m2 s−1 and f = 10−4s−1 we get

H2 ' AzU
f U

= 10−1/10−4 = 103m2. (5.14)

A typical boundary layer is in the order of H ' 30 m and frictional effects
can be felt up to a 100 m or so.

Momentum balance

We write the velocity field and the pressure field as the sum of interior
geostrophic part and a boundary layer correction:

u = ug + uE, p = pg + pE, (5.15)

where the Ekman layer corrections are negligible away from the bound-
ary layer. In the fluid interior we have, by hydrostatic balance, ∂pg

∂z = 0,
because we have considered the fluid to have constant buoyancy b =

−gρ′/ρ0. In the boundary layer, we still have ∂pg
∂z = 0 and, to satisfy
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hydrostasy, ∂pE
∂z = 0. But because pE vanishes away from the boundary,

pE = 0 everywhere. This implies that there is no boundary layer in the
pressure field. For the Ekman layer then, the horizontal momentum equa-
tion becomes

f× uE = Az
∂2u
∂z2 , (5.16)

the dominant force balance in the Ekman layer is thus between the Cori-
olis force and friction.

We can now estimate the depth over which the Ekman layer extends.
Recalling the Ekman number:

Ek =
Az

Ωd2 ' 1, (5.17)

this implies that d = (Az/Ω)1/2. With typical values A = 10−1 m2 s−1

and Ω = 10−4 s−1, we get a boundary layer of the order of 30 m.

5.2 Integral properties of the Ekman layer

Let’s now deduce the properties of the Ekman layer without specifying
the frictional stress tensor τij.

The Ekman mass transport

The frictional-geostrophic balance is

f× u = −1
ρ 0
∇z p +

1
ρ 0

∂τ

∂z
, (5.18)

where τ is zero at the edge of the Ekman layer. In the Ekman layer we
have

f× uE =
1
ρ 0

∂τ

∂z
. (5.19)

As we seek properties for the entire boundary layer, let’s integrate over its
thickness

f×
∫

Ek
ρ0uE dz = τT − τB, (5.20)

where subscripts T and B are for the stresses at the top and bottom of the
Ekman boundary layer.
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Figure 5.2: Meridional Ekman volume transport, -τx/( f ρ0), from QuickSCAT.

We now define the ageostrophic mass transport in the Ekman layer as

ME =
∫

Ek
ρ0uE dz. (5.21)

For a bottom Ekman layer, stress at the top will be zero. For a top
Ekman layer, stress at the bottom will be zero:

Top : f×ME = τT (5.22)
Bottom : f×ME = −τB (5.23)

which is equivalent to writing

Top : ME = −1
f

k× τT (5.24)

Bottom : ME =
1
f

k× τB. (5.25)

Take a situation in which τx = 0 and therefore MyE =
∫

Ek ρ0vE dz = 0
but MxE > 0 with τy > 0. The net transport is thus at right angles to
the stress at the surface (to the right for f > 0), and proportional to the
magnitude of the stress.
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Figure 5.3: (a) Meridional Ekman volume flux, -τx/( f ρ0), for each of the world
oceans as a function of latitude. Note the maximum of VE at about 45◦N and the
changeover between westerlies and easterlies at about 30◦N. (b) Vertical Ekman
volume flux, we, for the world’s oceans (see also Levitus, 1988).

Integrated over the depth of the Ekman layer, the surface stress must
be balanced by the Coriolis force, which in turn acts at right angles to
the mass transport. Mass transports in a top oceanic and bottom atmo-
spheric Ekman layers are equal and opposite, because the stress is con-
tinuous across the ocean-atmosphere interface (see Fig.5.4).

The Ekman vertical velocity: Ekman Pumping

We now obtain an expression for the vertical velocity induced by an Ek-
man layer. We start from the mass conservation equation

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (5.26)

and we integrate this over the Ekman layer∫
Ek

(∂u
∂x

+
∂v
∂y

)
dz = −

∫
Ek

∂w
∂z

dz. (5.27)

Remembering that we have defined ME =
∫

Ek ρ0uE dz,

1
ρ 0
∇ ·ME = −

∫
Ek

∂w
∂z

dz (5.28)

1
ρ 0
∇ ·ME = −(wT − wB). (5.29)
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Figure 5.4: The directions, for the northern hemisphere, and magnitude of the
steady Ekman mass transports in the atmosphere and oceanic boundary layers
when stress at the surface has the direction shown. Note that the sum of the at-
mospheric and oceanic Ekman mass transports is zero. When there is no pressure
gradient, the force per unit area exerted by the surface stress on each boundary
layer is equal to the product of mass per unit area and the Coriolis acceleration of
the layer. The latter quantity is f times the Ekman mass transport and is directed
at right angles to the stress. [from Gill (1982)]

Using Eq.5.20:
f×ME = τT − τB, (5.30)

and taking its curl we find

∇ ·ME = curlz[(τT − τB)/ f ] (5.31)

where we have used the curlz operator on a vector A defined as curlzA ≡
∂x Ay − ∂y Ax.

We now make use of Eq.5.29 and we obtain

1
ρ 0
∇ ·ME = −(wT − wB) =

1
ρ 0

curlz[(τT − τB)/ f ]. (5.32)

For a top Ekman layer we have:

wB =
1
ρ 0

curlz

(
τT/ f

)
(5.33)
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For a bottom Ekman layer we have:

wT =
1
ρ 0

curlz

(
τB/ f

)
(5.34)

Friction induces a vertical velocity in the Ekman layer, proportional to
the curl of the stress at the surface. This vertical velocity is called Ekman
pumping (see Fig.5.3). The production of a vertical velocity at the edge of
the Ekman layer is one of the most important effects of the layer, especially
with regard to the large-scale circulation, for it provides an efficient means
whereby surface fluxes are communicated to the interior flow.

5.3 A bottom boundary layer

We now derive the properties for the bottom boundary layer. If you are
more atmospherically inclined, think of this bottom boundary layer as the
one generated by the wind over some topography.

Our momentum equations (Eq.5.10) are completed by the mass conser-
vation equation

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (5.35)

and hydrostatic balance in the vertical

0 = −1
ρ 0

∂p
∂z

. (5.36)

Remember we are in a Boussinesq fluid. The flow can be divided into an
interior geostrophic part

− f vg = −1
ρ 0

∂p
∂x

(5.37)

f ug = −1
ρ 0

∂p
∂y

, (5.38)

(5.39)

or

f (ug, vg) = (−∂φ

∂y
,

∂φ

∂x
) (5.40)
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where φ ≡ p/ρ0. And a boundary layer correction

− f v = −1
ρ 0

∂p
∂x

+ A
∂2u
∂z2 (5.41)

f u = −1
ρ 0

∂p
∂y

+ A
∂2v
∂z2 . (5.42)

(5.43)

Given Eq.5.40, the frictional-geostrophic balance can be written as

− f (v− vg) = A
∂2u
∂z2 (5.44)

f (u− ug) = A
∂2v
∂z2 , (5.45)

or even better as

f× (u− ug) = A
∂2u
∂z2 . (5.46)

Our boundary conditions will be

at z=0: u = 0, v = 0 (no slip boundary condition) (5.47)
as z→ ∞: u = ug, v = vg (a geostrophic interior). (5.48)

We seek solutions of the form

u = ug + A0eαz, v = vg + B0eαz, (5.49)

where A0 and B0 are constants. Substituting into Eq.5.46 leads to

f A0 − AB0α2 = 0, − f B0 − AA0α2 = 0. (5.50)

Remember that, given the absence of temperature horizontal gradients,
via thermal wind, ∂zug = ∂zvg = 0.

For non-trivial solutions we have α4 = − f 2/A2, from which we find
α = ±(1± i)(1/d), where d = (2A/ f )1/2. Using the boundary conditions
we obtain the solution

u = ug − e−z/d
[
ugcos(z/d) + vgsin(z/d)

]
(5.51)

v = vg + e−z/d
[
ugsin(z/d)− vgcos(z/d)

]
. (5.52)

We have used d = (2A/ f )1/2, the depth of the Ekman layer. It is apparent
that the solution decays exponentially from the surface with an e-folding
scale equal to d.
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Now let’s suppose a flow that is directed eastward and has zero merid-
ional component (ug > 0, vg = 0). Velocities reduce to

u = ug[1− e−z/dcos(z/d)] (5.53)

v = ug e−z/dsin(z/d). (5.54)

This is already telling us that the meridional velocity within the bound-
ary layer is not zero. As z→ 01 we have

u = ug[1− (1− z/d)] = ugz/d (5.55)

v = ug (1− z/d)z/d = ugz/d−�����:
0

ugz2/d2. (5.56)

Hence, u and v are equal and generate a flow that is 45◦ to the left of the
direction of the interior flow (to the right when f < 0).

We can find a local maximum for the velocity in the boundary layer

∂u
∂z

= 0→ ∂z[ug − uge−z/dcos(z/d)] = 0 (5.57)

1
d

uge−z/dcos(z/d) +
1
d

uge−z/dsin(z/d) = 0

cos(z/d) + sin(z/d) = 0

tan(z/d) = −1

And so the depth of maximum velocity is

z =
3π

4
d.

At this depth

u = ug

(
1− e

3π
4 cos(

3π

4
)
)
= 1.07ug. (5.58)

Hence, the theoretical value of u reaches values larger then the interior
geostrophic flow because of frictional effects and redistribution of momen-
tum within the boundary layer.

The bottom Ekman layer can be seen in Fig.5.5, where the Ekman spiral
is depicted. At the bottom, the flow is at 45◦ to the left of the interior
geostrophic flow. The maximum u is obtained at z/d = 3π

4

1Taylor expanding and neglecting higher order terms e−z/d = 1 − z/d +���
��:z2/(2d2);

cos(z/d) = 1−����
�:

z2/(2d2); sin(z/d) = z/d−����
�:

z3/(3d3)
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Figure 5.5: The idealized Ekman layer solution at the bottom for vg = 0. [from
Vallis (2006)]

Transport and vertical velocity

We now find an expression for the (cross-isobaric) transport produced by
frictional effects. For vg = 0, we have

V =
∫ ∞

0
v dz =

∫ ∞

0
uge−z/dsin(z/d)dz =

d
2

ug (5.59)

U =
∫ ∞

0
(u− ug)dz = −

∫ ∞

0
uge−z/dsin(z/d)dz = −d

2
ug, (5.60)

and the general case with vg 6= 0 is simply

V =
d
2
(ug − vg) (5.61)

U = −d
2
(ug + vg). (5.62)

The total mass transport caused by frictional forces is thus

ME =
ρ0d
2

[
− i(ug + vg) + j(ug − vg)

]
. (5.63)

Recalling that the frictionally induced transport in the Ekman layer is re-
lated to the stress at the surface by ME = (k × τB)/ f , a full picture of
stress, cross-isobaric velocity and total transport is given in Fig.5.6.
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Figure 5.6: A bottom Ekman layer, generated from an eastward geostrophic flow
above. An overbar denotes a vertical integral over the Ekman layer. so that − f ×
uE is the Coriolis force on the vertically integrated Ekman velocity. ME is the
frictionally induced boundary layer transport, and τ is the stress. [from Vallis
(2006)]

The flow within the Ekman layer has a nonzero divergence, indeed:

∂U
∂x

+
∂V
∂y

= −d
2

[
∂x(ug + vg)− ∂y(ug − vg)

]
(5.64)

=
d
2

[
− (∂xug + ∂yvg)− ∂xvg + ∂yug

]
. (5.65)

The first term on the r.h.s. is zero because the interior flow is non-
divergent, hence:

∂U
∂x

+
∂V
∂y

= −d
2
(∂xvg − ∂yug) = −

d
2

ζg (5.66)

The vertical velocity at the top of the Ekman layer is, for a constant f (and
using Eq.5.34)

wE = −1
ρ 0
∇ ·ME =

1
ρ 0

curlz

(
τB/ f

)
=

d
2

ζg (5.67)

There will be divergence if the interior geostrophic flow presents vor-
ticity. The vertical velocity at the top of the bottom Ekman layer, which
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arises because of the frictionally-induced divergence of the flow in the
Ekman layer, is proportional to the geostrophic vorticity and to the Ek-
man layer height.

5.4 A surface boundary layer

We now look for solutions for a surface Ekman layer. In this case, the
wind provides a stress on the upper ocean, and the Ekman layer serves to
communicate this to the ocean interior.

We start again with our momentum equations, which for the interior
geostrophic flow are

− f vg = −1
ρ 0

∂p
∂x

(5.68)

f ug = −1
ρ 0

∂p
∂y

, (5.69)

or

f (ug, vg) = (−∂φ

∂y
,

∂φ

∂x
) (5.70)

where φ ≡ p/ρ0. And for the Ekman layer

− f v = −1
ρ 0

∂p
∂x

+ A
∂2u
∂z2 (5.71)

f u = −1
ρ 0

∂p
∂y

+ A
∂2v
∂z2 . (5.72)

(5.73)

The frictional-geostrophic balance can be written again as

− f (v− vg) = A
∂2u
∂z2 (5.74)

f (u− ug) = A
∂2v
∂z2 , (5.75)

or even better as

f× (u− ug) = A
∂2u
∂z2 (5.76)
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Our boundary conditions will be

at z=0: τx = ρ0A
∂2u
∂z2 , (a given surface stress) (5.77)

τy = ρ0A
∂2v
∂z2 (5.78)

as z→ −∞: u = ug (a geostrophic interior) (5.79)
v = vg (5.80)

We now introduce the kinematic wind stress at the surface, τ̃ = τ/ρ0,
and seek solutions by the same method we used for the bottom layer:

u = ug +

√
2

f d
ez/d

[
τ̃xcos(z/d− π/4)− τ̃ysin(z/d− π/4)

]
, (5.81)

v = vg +

√
2

f d
ez/d

[
τ̃xsin(z/d− π/4) + τ̃ycos(z/d− π/4)

]
. (5.82)

Note that the boundary layer correction depends only on the imposed
surface stress, and not on the interior flow. In the absence of an imposed
stress the boundary layer correction is zero, and u = ug. Similar to the
bottom boundary layer, the velocity vector traces a diminishing spiral as
it descend into the interior (Fig.5.7). The velocity within the boundary
depends on its depth, d =

√
2A

f , which depends on the eddy viscosity A.
If the fluid is not very viscous, it will generate a small Ekman layer, and
the velocity within the layer can be large for small stresses.

What is the value and direction of the surface velocity? at z = 0 we
have

u(0) = ug +

√
2

f d

[
τ̃xcos(−π/4)− τ̃ysin(−π/4)

]
, (5.83)

v(0) = vg +

√
2

f d

[
τ̃xsin(−π/4) + τ̃ycos(−π/4)

]
. (5.84)

Since cos(−π/4) =
√

2/2 and sin(−π/4) = −
√

2/2, the solution is

u(0) = ug +

√
2

f d

[
τ̃x
√

2
2

+ τ̃y
√

2
2

]
, (5.85)

v(0) = vg +

√
2

f d

[
− τ̃x

√
2

2
+ τ̃y

√
2

2

]
. (5.86)
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Figure 5.7: An idealized Ekman spiral in the southern hemisphere ocean, driven
by an imposed wind stress. The net transport is at right angles to the wind,
independent of the detailed form of the friction. The angle of the surface flow is at
45◦ to the wind (only for a Newtonian viscosity). [from Vallis (2006)]

Suppose the surface wind is eastward. In this case τ̃y = 0 and the
solutions reduce to

u(0) = ug +

√
2

f d

[
τ̃x
√

2
2

]
, (5.87)

v(0) = vg −
√

2
f d

[
τ̃x
√

2
2

]
. (5.88)

The velocity at the surface of the Ekman layer are simply

u(0)− ug =
τ̃x

f d
, (5.89)

v(0)− vg = − τ̃x

f d
. (5.90)

Therefore the magnitudes of the frictional flow in the x and y directions
are equal to each other, and the ageostrophic flow is 45◦ to the right (for
f > 0) of the wind. This result does not depend on the size of the viscosity.
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Transport and vertical velocity (or Ekman pumping / suction)

The transport induced by the surface stress is obtained by integrating
(5.81) and (5.82)

U =
∫ 0

−∞
(u− ug)dz =

τ̃y

f
(5.91)

V =
∫ 0

−∞
(v− vg)dz = − τ̃x

f
, (5.92)

which indicates that the ageostrophic transport is perpendicular to the
wind stress, as previously noted (see Fig.5.8). It should be noted that these
results are correct even if the details of the Ekman spiral are not.

Again the ageostrophic flow will be divergent

∂U
∂x

+
∂V
∂y

=
∫ 0

−∞
dz
(∂U

∂x
+

∂V
∂y

)
=

1
f

(
∂xτ̃y − ∂yτ̃x

)
= (5.93)

wE =
1
f

curlzτ̃. (5.94)

As previously noted in (5.33). At the edge of the Ekman layer the vertical
velocity (Ekman pumping) is proportional to the curl of the wind stress.

The Ekman pumping is associated with the frictionally induced ver-
tical velocity wE. This vertical Ekman velocity starts with zero due to

Figure 5.8: An idealized Ekman velocity spiral.
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the boundary condition at the surface, followed by an exponential pattern
within the top Ekman layer, and approaches a constant below.

It is quite hard to observe Ekman spirals both in the ocean and atmo-
sphere (but not in a laboratory where you can control viscosity and back-
ground conditions!). The theory does not take into account stratification,
gravity waves and assumes a steady wind. Nevertheless both the Ekman
mass transport and vertical velocity are independent of details of the Ek-
man layer, and only depend on the imposed stress (Fig. 5.9 and Fig. 5.11).
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Figure 5.9: Climatological zonal and meridional wind stress from QuickSCAT.
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Figure 5.10: Climatological wind stress curl and Ekman pumping velocity, we
(m/year), from QuickSCAT. It is positive in the subtropical regions on the order
of 20-50 m per year and mostly negative over the subpolar regions. Towards the
equator, f goes to zero, and Ekman pumping and Ekman transport become ill-
defined.
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Paul Ullrich The Wind-Driven Circulation Spring 2020

The global pattern of Ekman 
vertical velocity appears to the 
right using the mean observed 
wind stress and Ekman theory.

The equatorial strip is a region of 
upwelling since the trade winds 
drive fluid away from the equator 
in the surface layer.  This process 
then requires a supply of water 
from below.

Figure:  The direction of Ekman pumping and 
suction is responsible for the odd bi-modal 
shape of the ocean’s density anomaly.

Equatorial Upwelling

Abyss

Cold, fresh, 
well-mixed

Warm, salty, 
stratified

Thermocline

Ekman Pumping / Suction

Figure 5.11: The direction of Ekman pumping and suction is responsible for the
odd bi-modal shape of the ocean’s density anomaly.
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Figure 5.12: Section through a cyclonic wind over the ocean. The geostrophic
wind gives a cyclonic rotation around the low-pressure center. The Ekman mass
transport in the atmospheric boundary layer is inward, bringing mass to fill the
low, and the associated vertical pumping velocity is therefore upward. The Ekman
mass transport in the oceanic boundary layer is equal and opposite to that in the
atmosphere, so there is an outward mass transport and upward pumping velocity
in the ocean. This tends to raise the thermocline. The upper Ekman layer in the
ocean is primarily driven by an imposed wind stress, whereas the lower Ekman
layer in the ocean largely results from the interaction of interior geostrophic ve-
locity and a rigid lower surface [from Vallis (2006) and Gill (1982)].
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Ekman velocity Spiral

• Frictionally induced surface velocity to the right of the wind
(for f > 0, due to Coriolis)

• Surface layer pushes next layer down slightly to the right, gen-
erating a slightly weaker current

• Next layer pushes next layer, slightly to right and generating a
slightly weaker current

• Producing a “spiral” of the current vectors, to the right in
the northern hemisphere, with decreasing speed as depth in-
creases

• Details of the spiral depend on the vertical viscosity (how fric-
tional the flow is, and also whether friction depends on depth)

• The total transport only depends on the imposed wind stress

• Typical transport size: for a wind stress 0.1 N m−2, ME =
τ/(ρ f ) =1 m2 s−1. Integrate this over ‘width’ of the ocean,
say 5000 km, we get a total transport of 5× 106 m3 s−1= 5 Sv
(1 Sv ≡ 106 m3 s−1)
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5.5 Upwelling

5.5.1 Coastal Upwelling

Suppose we have a wind which is entirely meridional, τx = 0, and there-
fore My

E = 0 and Mx
E > 0 for τy > 0. The net transport will be to the

left of and at right angles to the wind direction (for f < 0). Continuity re-
quires that there must be inflow from the right of the wind direction. If the
wind is blowing parallel to a coastline which is on the right of the wind, as
the wind causes an Ekman frictionally induced transport to the left away
from the coast, water is replaced from below, generating a so-called coastal
upwelling near the region of divergence along the coast.

Coastal upwelling is accompanied by a rise in upper ocean isopycnals
toward the coast. This creates an equatorward geostrophic surface flow,
the eastern boundary current. Poleward undercurrents are observed at about
200 m depth beneath the equatorward surface currents (Fig.5.13c). Pole-
ward undercurrents are created mainly by the alongshore pressure gra-
dient that drives the onshore subsurface geostrophic flow that feeds the
upwelling.

Given the prevailing wind directions, the largest coastal upwelling re-
gions happen to be on eastern boundaries of ocean basins. Eastern bound-
ary upwelling systems (EBUS) cover less than 3% of the world ocean sur-
face yet they have a significant role in the climate system, and are home
to the largest contribution of ocean biological productivity with up to 40%
of the reported global fish catch (Fig.5.14). The upwelled water does not
come from great depths. Observations and models show that upwelled
water comes from depths not greater than 200-300 m. Usually the up-
welled water has high nutrient content, and plankton production may be
promoted with important biological consequences when photosynthesis
is activated in the photic zone.

Coupled with the vast coastal human populations, these regions play
key biological and socio-economical roles. There are common features
to eastern boundary upwelling regions: wind-driven flows, alongshore
currents, steep shelves and large vertical and offshore nutrient transports.
Despite the commonality, each of the main upwelling systems (California,
Humboldt, Canary and Benguela Current Systems), exhibits substantial
differences in primary productivity, phytoplankton biomass, and commu-
nity structures. The reasons for these differences are not fully understood.

Many coupled climate models generate very large sea surface tempera-
ture (SST) biases in the coastal upwelling regions of the California Current
System, the Humboldt Current system and the Benguela Current System,
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Figure 5.13: Ekman transport divergence near the equator driven by easterly
trade winds. (a) Ekman transports. (b) Meridional cross-section showing effect
on the thermocline and surface temperature. (c) Coastal upwelling system due to
an alongshore wind with offshore Ekman transport ( f > 0). The accompanying
isopycnal deformations and equatorward eastern boundary current and poleward
undercurrent are also shown. [from Talley et al. (2011)]
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upwelling and cholorophyll

SeaWiFS Sep. ‘97 - Aug. ‘98
coastal upwelling

Figure 5.14: A false-color image depicting chlorophyll-a concentration as mea-
sured from the SeaWIFS satellite data. Eastern Boundary Upwelling systems
(EBUS) regions (California, Peru, Canary and Benguela) are shown by the pink
ovals.

where simulated mean SSTs are much warmer than observed (typically in
excess of 3◦C and as high as 10◦C; see Fig.5.15). Furthermore, these SST
biases have significant remote effects on surface and subsurface tempera-
ture and salinity, and on precipitation and hence atmospheric heating and
circulation. The warm temperature biases associated with upwelling re-
gions strongly limit the prediction of future evolution of these regions.
Increased model resolution, achieved via nesting or adaptive gridding,
improves simulations of the regional climate and affects the large-scale
climate system through feedbacks.
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Figure 5.15: Time-mean (1985-2004) SST bias for (a) CMIP5, (b) CMIP6 and (c)
HighResMIP multi-model mean relative to OISST. Every contour represents an
SST bias of 1 K. Black dots show regions where all models agree on the sign of the
bias. The poles are excluded in order to highlight the biases in the EBUS regions,
which present the highest SST anomalies. The 4 major EBUS are: the California
Current System (CCS), the Canary Current System (CaCS), the Humboldt Cur-
rent system (HCS) and the Benguela Current System (BCS). [from Farneti et al.
(2022)]
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5.5.2 Equatorial Upwelling

Equatorial upwelling due to Ekman transport results from the westward
wind stress (trade winds). These cause northward Ekman transport north
of the equator and southward Ekman transport south of the equator. This
results in upwelling along the equator, even though the wind stress curl is
small because of the Coriolis parameter dependence in (5.33).

At the equator, where the Coriolis parameter changes sign, zonal (east-
west) winds can cause Ekman convergence or divergence even without
any variation in the wind (Fig.5.13a). Right on the equator, there is no
Ekman layer since the Coriolis force that would create it is zero ( f = 0). If
the equatorial wind is westward (a trade wind), then the Ekman transport
just north of the equator is northward, and the Ekman transport just south
of the equator is southward, and there must be upwelling into the surface
layer on the equator.

Trade winds are relatively steady easterlies. They are driven by warm
waters in the western region and cooler waters in the east, which creates
rising air in the west and sinking air in the east, and a thermally direct flow
from east to west to feed this (Walker cell). In the ocean the true equatorial
region is much narrower - about 2 degrees wide. Easterly trade winds at
the equator drive (1) poleward Ekman transport and (2) westward surface
flow, as follows. The easterly trade winds cause northward Ekman trans-
port just to the north of the equator and southward Ekman transport just
to the south of the equator. This causes upwelling at the equator. As a
result, the pycnocline shoals towards the equator (Fig.5.13b). This drives
a westward geostrophic flow at the sea surface.

Directly on the equator, the effect of rotation on the circulation van-
ishes, and so the concepts of geostrophic and Ekman flow do not apply.
At the equator, the easterly trade winds push the surface water directly
(frictionally) from east to west. This water piles up gently in the western
Pacific (0.5 meters higher there than in the eastern Pacific). The pycnocline
is deeper in the west also as a result, and much warmer water is found
there (so-called “warm pool”). Upwelling in the east draws cool water to
the surface because of the shallow pycnocline there, but intense eastward-
flowing upwelling in the west cannot create cold water at the surface there
because of the thickness of the warm pool.

Because the sea surface is higher in the west than in the east, there is
a pressure difference that causes the flow just beneath the surface layer
to be eastward. This strong eastward flow is the Equatorial Undercur-
rent. It is centered at about 150 to 200 m depth. EUC speeds are in excess
of 100 cm/sec. The current is exceptionally thin vertically (about 150 m
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thick). The Equatorial Undercurrent shoals towards the east, as does the
pycnocline. The shoaling is associated with upwelling of cool water in the
central/eastern Pacific, giving rise to the ”cold tongue” (in non-El Niño
years). Steady trade winds, which cause equatorial upwelling, are more
prevalent in the east than in the west. When the trade winds weaken
or even reverse, the flow of water westward at the equator weakens or
reverses and upwelling weakens or stops. Surface waters in the eastern
Pacific warm significantly since upwelling is no longer bringing the cool
waters to the surface. The deep warm pool in the western Pacific thins as
its water sloshes eastward along the equator in the absence of the trade
winds which maintain it.
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Exercices

1. For A = 10−1 m2 s−1 and f = 10−4 s−1, what would be the typical
depth of an Ekman layer?

2. Assume that the atmospheric Ekman layer over the earth’s surface
at latitude 45◦N can be modeled with a turbulent kinematic viscos-
ity ν = 10m2 s−1. If the geostrophic velocity above the layer is 10
m s−1 and is uniform, what is the vertically integrated flow across
the isobars (pressure contours)? Is there any vertical velocity?

3. Meteorological observations above New York City (41◦N) reveal a
neutral atmospheric boundary layer (no convection and no stratifi-
cation) and a westerly geostrophic wind of 12 m s−1 at 1000 m above
street level. Under neutral conditions, Ekman layer dynamics apply.
Using an eddy viscosity of 10 m2 s−1, determine the wind speed and
direction atop the World Trade Center (height: 411 m).

4. Between 15◦N and 45◦N, the winds over the North Pacific consist
mostly of the easterly trades (15◦N to 30◦N) and the westerlies (30◦N
to 45◦N. An adequate representation is

τx = τ0sin
(πy

2L

)
, τy = 0, −L ≤ y ≤ L, (5.95)

where τ0 = 0.15 N/m2 is the maximum wind stress and L = 1670 km.
Taking ρ0 = 1028 kg/m3 and the value of the Coriolis parameter
corresponding to 30◦N, calculate the Ekman pumping. Which way
is it directed? Calculate the vertical volume flux over the entire 15◦N-
45◦N strip of the North Pacific (width = 8700 km). Express your
answer in Sverdrup units (1 Sverdrup = 1 Sv ≡ 106 m3 s−1).
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Chapter 6
Wind-Driven Circulation

We will now use and integrate both Ekman theory and the geostrophic
approximation to get a first solution to the wind-driven circulation. They
will be the basis for the theory of the wind-driven gyres. At first, the theory
will be simple, with no topography and in a steady state, but it will be able
to explain many of the qualitative features of the wind-driven circulation.

The first theory presented is the steady, forced-dissipative, homoge-
neous model first formulated by Stommel; and different versions will be
discussed.

We start with the simplest model that can capture our physical setting.
We will assume (see Fig. 6.1)

• a homogeneous (or depth-integrated) model.

• Flat bottom.

• Steady state.

• The β-plane approximation.

Let’s now remember the solutions for the top and bottom Ekman ver-
tical velocities, and the momentum equations for the geostrophic flow:

wT
E =

1
f0

(
∂xτ̃y − ∂yτ̃x

)
=

1
f0

curlzτ̃T =
1

ρ0 f0
curlzτT (6.1)

wB
E = −1

ρ 0
∇ ·ME =

1
f0

curlzτ̃B =
d
2

ζg, (6.2)

where ζg = (∂xvg − ∂yug) is the vorticity of the interior geostrophic flow.
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Figure 6.1: A schematic of an idealized wind-driven Ekman pumping on a β-
plane for a homogeneous ocean of depth H, resulting in a simple model for mid-
latitude ocean circulation.

The interior geostrophic flow (for a homogeneous barotropic fluid in
which ρ′ = 0) is

− f v = −1
ρ 0

∂p
∂x

(6.3)

f u = −1
ρ 0

∂p
∂y

(6.4)

0 =
1
ρ 0

∂p
∂z

(6.5)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (6.6)
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6.1 A linear geostrophic vorticity balance approach:
Sverdrup Balance

Within a β-plane, the interior geostrophic flow becomes

−( f0 + βy)v = −1
ρ 0

∂p
∂x

(6.7)

( f0 + βy)u = −1
ρ 0

∂p
∂y

(6.8)

0 =
1
ρ

∂p
∂z

(6.9)

∇3 · v = 0. (6.10)

And we will use v = (u, v, w) and u = (u, v).
Cross-differentiating the horizontal momentum equations [∂x(6.8)-∂y(6.7)]

gives:

f0

(∂u
∂x

+
∂v
∂y

)
+ βy

(∂u
∂x

+
∂v
∂y

)
+ βv = 0. (6.11)

But since in a β-plane βy� f0, we have

f0

(∂u
∂x

+
∂v
∂y

)
+ βv = 0. (6.12)

or

βv = f0
∂w
∂z

(6.13)

Which is a form of the linear geostrophic vorticity balance, and is known
as SVERDRUP BALANCE.

Eq.6.13 expresses a conservation of potential vorticity. If ∂w
∂z > 0, there

will be stretching of the fluid column. As the column stretches and shrinks
it has to increase its vorticity in order to conserve angular momentum. At large
scales, the only significant vorticity is the planetary vorticity f , which in
this case has to increase to balance the positive ∂w

∂z . β is indeed a rate of vor-

ticity change
(

∂ f
∂y

)
. This balance is responsible for a meridional velocity

v.
Geostrophy was previously studied on a f -plane, resulting in w = 0.

We now find a vertical velocity within the geostrophic flow using the β-
plane. If β = 0 = ∂ f

∂y , then the vertical geostrophic velocity is w = 0.
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What is the structure of ∂w
∂z ?

Taking the vertical derivative of the horizontal momentum equations

−( f0 + βy)
∂v
∂z

= −1
ρ 0

∂2p
∂x∂z

(6.14)

( f0 + βy)
∂u
∂z

= −1
ρ 0

∂2p
∂y∂z

. (6.15)

But ∂p
∂z = 0. Hence ∂u

∂z = ∂v
∂z = 0 and the flow is barotropic and there is

no vertical shear. ∂w
∂z is constant throughout the interior and different from

zero.
Now take a vertical derivative of the vertical velocity, and remember-

ing the Ekman solutions we find

∂w
∂z

=
wT − wB

H
=

1
ρ0 f0H

curlzτ − d
2H

ζg, (6.16)

where H is the depth of the interior flow.
Using the geostrophic expressions for the horizontal velocities

−∂v
∂x

= − 1
ρ0 f0

∂2p
∂x2 (6.17)

∂u
∂y

= − 1
ρ0 f0

∂2p
∂y2 (6.18)

our solution βv = f0
∂w
∂z becomes

β

ρ0 f 2
0

∂p
∂x

=
1

ρ0 f0H
curlzτ − d

2Hρ0 f0

(∂2p
∂x2 +

∂2p
∂y2

)
, (6.19)

since ζ = ( ∂v
∂x − ∂u

∂y ). Or

β
∂p
∂x︸︷︷︸

meridional velocity

=
f0

H

(
curlzτ︸ ︷︷ ︸

Ekman at
the top

− d
2
∇2p︸ ︷︷ ︸

Ekman at
the bottom

)
(6.20)

This is the governing equation for the ocean interior, away from the Ekman
layers. It is driven by input of momentum at the surface and drag at the
bottom.
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Figure 6.2: Wind stress curl computed from QuickSCAT reanalysis
[https://doi.org/10.1175/2008JPO3881.1].
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6.2 The Stommel model

We will now use the planetary-geostrophic equations. Let’s define φ =
p/ρ0 and b = −gρ′/ρ0. For a Boussinesq fluid, the planetary geostrophic
equations are

f× u = −∇φ +
1
ρ 0

∂τ

∂z
(6.21)

∂φ

∂z
= b (6.22)

∇3 · v = 0. (6.23)

The first equation is the horizontal momentum equation using geostrophic
balance and a stress term. The second equation is the vertical momentum
equation (hydrostatic balance). And the third is mass continuity.

The planetary geostrophic equations are essentially the Boussinesq prim-
itive equations with the advection terms omitted in the horizontal momen-
tum equation. They have been derived with a ’low Rossby number scal-
ing’, but for large scales, much larger than the deformation scale. Hence,
this set of equations are composed of the geostrophic balance and the full
mass continuity equations. These equations are not too useful in the atmo-
sphere, where the deformation radius for a continuously stratified fluid,

Ld = NH
f (or

√
gH
f ), is about 1000 km. Only the description of plane-

tary waves can satisfy the PG equations. For the ocean, instead, where
Ld ' 100 km, the PG equations are very useful, and used for the theory of
large-scale circulation.

We now take the curl (or cross-differentiate) of (6.21) and find

f∇ · u +
∂ f
∂y

v = curlzτ̃ (6.24)

where again curlz A = k · ∇ × A = ∂x Ay − ∂y Ax, and τ̃ = τ/ρ0.
Now integrate over the full depth of the ocean∫

f∇ · u dz +
∂ f
∂y

∫
v dz = curlz(τ̃T − τ̃B). (6.25)

The first term vanishes, the divergence term, if the vertical velocities are
zero at the top and bottom of the ocean. This is true for a flat-bottomed
ocean but is not the case when topography will be added. We are thus left
with:

βv = curlz(τ̃T − τ̃B) . (6.26)
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Where A =
∫

A dz. Eq. (6.26) is equivalent to Eq. (6.13), i.e. the SVER-
DRUP BALANCE, a balance between the input of vorticity from the wind-stress
curl and the advection of planetary vorticity.

We now work on the rhs of (6.26). At the top the stress is given by the
wind. At the bottom, which is flat for now, we parameterize the stress
with a LINEAR DRAG, or Rayleigh friction, as it would be generated by
an Ekman layer, and obtain

βv = Fτ(x, y)− rζ . (6.27)

Here the meridional flow is governed by

1. Fτ(x, y) = curlzτ̃T; the curl of the wind stress at the top of the ocean.

2. ζ = ∂v
∂x − ∂u

∂y ; the vorticity of the vertically integrated flow

3. r; a linear drag or Rayleigh friction.

The flow velocity is divergent-free and we can define a streamfunction

u = −∂ψ

∂y
v =

∂ψ

∂x

such that

β
∂ψ

∂x
= Fτ(x, y)− r∇2ψ . (6.28)

This is the STOMMEL PROBLEM or MODEL. The contribution of Stom-
mel is the addition of a linear bottom drag that would balance the momen-
tum input at the surface.

6.2.1 A homogeneous model

Instead of vertically integrating our momentum equations, we can instead
consider a homogeneous layer of fluid, obeying the shallow water equa-
tions. The potential vorticity equation becomes

D
D t

( f + ζ

H

)
=

F
H

, (6.29)

where F represents both forcing and friction. If the ocean is flat-bottomed
and has a rigid lid, then

D ζ

D t
+ βv = F. (6.30)
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This is the barotropic PV equation. Because of the rigid lid and flat-bottom,
the flow is divergent-free, and we can express it with the usual streamfunc-
tion:

D
D t
∇2ψ + β

∂ψ

∂x
= Fτ(x, y)− r∇2ψ . (6.31)

The first term of the l.h.s characterizes the time-dependent, non-linear STOM-
MEL MODEL. The steady non-linear model is simply

J(ψ,∇2ψ) + β
∂ψ

∂x
= Fτ(x, y)− r∇2ψ. (6.32)

Where the Jacobian is

J(A, B) =
∂A
∂x

∂B
∂y
− ∂A

∂y
∂B
∂x

. (6.33)

And so the advective term is

u
∂∇2ψ

∂x
+ v

∂∇2ψ

∂y
= (6.34)

−∂ψ

∂y
∂∇2ψ

∂x
+

∂ψ

∂x
∂∇2ψ

∂y
= (6.35)

∂ψ

∂x
∂∇2ψ

∂y
− ∂ψ

∂y
∂∇2ψ

∂x
= (6.36)

J(ψ,∇2ψ). (6.37)

To recover the original Stommel model we need to ignore the advective
derivative (the source of our non-linearities).

Take the barotropic PV equation (6.30) and perform a scale analysis of
all terms:

D ζ

D t︸︷︷︸
U
L

U
L

+ βv︸︷︷︸
βU

= F. (6.38)

Let’s define Z = U
L a representative value for vorticity, so that in order to

ignore nonlinearities the following inequality must hold: Z � βL, or

Rβ =
U

βL2 � 1 (6.39)

which is called the β Rossby number1. Assuming a β Rossby number
much smaller than unity is equivalent to the small Rossby number as-
sumption used to obtain the PG equations.

1Remember that the Rossby number is Ro =
U
f L
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The response to an input of vorticity: relative vorticity or planetary vor-
ticity?

Recalling the PV equation

D
D t

( f + ζ

H

)
=

F
H

, (6.40)

The ocean will respond to an input of vorticity F by either changing ζ or
f . Using the above scaling approach we see that

D ζ

D t︸︷︷︸
U2
L2

+ βv︸︷︷︸
βU

= F. (6.41)

The ratio of relative vorticity and advection of planetary vorticity is

D ζ

D t
/

D f
D t
∼ U

βL2 ≡ Rβ. (6.42)

• Consider now the basin scale (L ∼1000 km, U ∼0.01 m s−1). The β
Rossby number would be

Rβ =
U

βL2 =
10−2

10−11(106)2 = 10−3. (6.43)

Within the basin scale, the rate of change of relative vorticity is small
compared to the rate of change of planetary vorticity. This means
that an input of vorticity, say from the wind, does not induce the flow
to increase its rotation, rather it will force the flow to move meridion-
ally to reach a balance through f .

• Now consider a frontal zone instead (L ∼10 km, U ∼0.1 m s−1). The β
Rossby number would be

Rβ =
U

βL2 =
10−1

10−11(104)2 = 102. (6.44)

Within a frontal zone, the rate of change of ζ is much larger than β.
This means that the ocean will respond to F by changing ζ.

The response is thus fundamentally different, and the two regions will be
governed by different dynamics: there will be a large interior regime and a
narrow boundary layer regime.
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6.2.2 The interior: Sverdrup balance

The Stommel model is linear, and we can obtain analytical solutions

β
∂ψ

∂x
= Fτ(x, y)− r∇2ψ (6.45)

First, note that the Stommel model was previously derived by the β-
plane approximation to the primitive equations:

β
∂p
∂x

=
f0

H
curlzτ − f0d

2H
∇2p. (6.46)

Now, let’s have a look at the relative role of the top and bottom Ek-
man contributions. The ratio between the pressure gradient term and the
frictional term is

f0d
2H

P/L2/(βP/L)→ f0d
2HβL

(6.47)

Typical values can be used for d ∼15 m, f0 ∼10−4, β ∼10−11, H ∼3000 m
and L ∼1000 km, and the ratio is ∼0.02. This implies that the frictional
term can be neglected and that the Ekman pumping induced by the wind
stress is much larger than the one resulting from bottom friction.

This approximation will lead us towards our first solution

β
∂p
∂x

=
f0

H
curlzτ, (6.48)

which implies a meridional velocity that is a function of the wind-stress
curl, and is best known as Sverdrup balance.

Suppose, in fact, that the frictional term is small, so there is an approx-
imate balance between the input of vorticity by the wind stress and the
β-effect (or the rate of change of planetary vorticity).

Friction is small if
|rζ| � |βv|. (6.49)

If we define r = f0δ
H , as suggested by (6.46), where δ is the thickness of the

bottom Ekman layer, then

f0δ

H
U
L
� βU, or

r
L
� β. (6.50)

This inequality is well satisfied in large-scale flows, where L is the hori-
zontal scale of the motion. The vorticity equations is thus

β
∂ψ

∂x
= Fτ(x, y) (6.51)
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Figure 6.3: Estimate of Sverdrup transport computed from QuickSCAT as v =
curlzτ̃/β.

which is just an expression of Sverdrup balance

βv = curlzτ̃ (6.52)

This is equivalent to the linear geostrophic vorticity balance

βv = f0
∂w
∂z

(6.53)

where stress at the bottom is neglected. In fact, over most of the ocean, the
deep flow is very weak, meaning that bottom drag is negligible.

Eq.6.52 is not a transport, rather just a balance between wind stress at
the surface and the β-effect leading to a meridional velocity v = 1

β curlzτ

(Fig. 6.3).
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and subpolar gyres, resulting from planetary
vorticity changes that balance Ekman pumping
or Ekman suction.

All of the meridional flow is returned in
western boundary currents, for reasonsdescribed
in the following sections. Therefore, subtropical
gyres must be anticyclonic and subpolar gyres
must be cyclonic.

Mathematically, the Sverdrup balance is
derived from the geostrophic equations of
motion with variable Coriolis parameter f
(Eq. 7.23a,b). The x- and y-momentum equa-
tions are combined to form the vorticity equa-
tion, recalling that b = df/dy:

fðvu=vxþ vv=vyÞ þ bv ¼ 0 (7.41)

Using the continuity equation

vu=vxþ vv=vyþ vw=vz ¼ 0 (7.42)

Eq. (7.41) becomes the potential vorticity
balance

bv ¼ f vw=vz: (7.43)

This important equation states that water
column stretching in the presence of rotation is
balanced by a change in latitude (Figure S7.28).

In Eq. (7.43), the vertical velocity w is due to
Ekman pumping. From Eqs. (7.20) and (7.21):

w ¼ v=vx
!
sðyÞ=rf

"
% v=vy

!
sðxÞ=rf

"

¼ }curl s} (7.44)

where s is the vector wind stress, s(x) is the zonal
wind stress, and s(y) is the meridional wind
stress. Assuming that the vertical velocity w is
zero at great depth, Eq. (7.43) can be vertically
integrated to obtain the Sverdrup balance:

Ekman transportEkman 
downwelling

Thermocline

Sverdrup transport

Subtropical gyre

East

North

Ekman transport

Ekman 
upwelling

Ekman 
upwelling

Northern Hemisphere

Subpolar gyre

Tropical gyre

Westerlies

Trades

FIGURE S7.32 Sverdrup
balance circulation (Northern
Hemisphere). Westerly and trade
winds force Ekman transport
creating Ekman pumping and
suction and hence Sverdrup
transport.

S7. DYNAMICAL PROCESSES FOR DESCRIPTIVE OCEAN CIRCULATION54

Figure 6.4: Sverdrup balance circulation ( f > 0). [from Talley et al. (2011)]

Physical interpretation

Consider a schematic of the subtropical North Pacific. The winds at the
sea surface are not spatially uniform. South of about 30◦N, the Pacific
is dominated by easterly trade winds. North of this, it is dominated by
the westerlies. This causes northward Ekman transport under the trade
winds, and southward Ekman transport under the westerlies. As a result,
there is Ekman convergence throughout the subtropical North Pacific.

The convergent surface layer water in the subtropics must go some-
where so there is downward vertical velocity at the base of the (50 m thick)
Ekman layer. At some level between the surface and ocean bottom, there is
likely no vertical velocity. Therefore there is net “squashing” of the water
columns in the subtropical region (Ekman pumping).

This squashing requires a decrease in either planetary or relative vor-
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ticity (remember potential vorticity conservation D
Dt

f+ζ
H = 0). In the ocean

interior, relative vorticity is small, so planetary vorticity must decrease,
which results in the equatorward flow that characterizes the subtropical
gyre (Fig. 6.4).

The subpolar North Pacific lies north of the westerly wind maximum
at about 40◦N. Ekman transport is therefore southward, with a maximum
at about 40◦N and weaker at higher latitudes. Therefore there must be
upwelling (Ekman suction) throughout the wide latitude band of the sub-
polar gyre. This upwelling stretches the water columns, which then move
poleward, creating the poleward flow of the subpolar gyre.

The Sverdrup transport is the net meridional transport diagnosed in
both the subtropical and subpolar gyres, resulting from planetary vorticity
changes that balance Ekman pumping or Ekman suction. All of the meridional
flow is returned in western boundary currents, for reasons described in
the following sections. Therefore, subtropical gyres must be anticyclonic
and subpolar gyres must be cyclonic.

Computing the transport

Assuming the ocean circulation is in Sverdrup balance, v = ∂ψ
∂x gives the

meridional mass transport of the vertically integrated column of fluid due
to a surface wind stress. The constraint that there be no normal flow across
the ocean’s horizontal boundaries means that ψ = const on the bound-
aries. We pick this constant arbitrarily to be 0. We must choose whether
to choose the eastern or western boundary as the limit of integration. This
cannot be determined by Sverdrup balance alone, it requires consideration
of frictional boundary layers.

We choose the eastern boundary, requiring closure of the circulation in
a western boundary current, and we require that the streamfunction be
zero on the eastern boundary.

Integrating from east to west, and using the boundary condition ψ = 0
at x = xE(y), the streamfunction is (see Fig. 6.5 and Fig. 6.6)

xE∫
x

∂ψ

∂x
dx′ =

1
β

xE∫
x

curlzτ̃T dx

ψ(x, y) = − 1
β

xE∫
x

curlzτ̃T dx.

Two examples are shown in Fig. 6.5 for the North Atlantic and the
North Pacific. The Sverdrup balance gives a reasonable good estimation
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Figure 6.5: Estimate of the depth-integrated circulation (in Sv) predicted by the
Sverdrup balance in the North Atlantic and the North Pacific computed with
QuickSCAT winds. The solution assumes that the depth-integrated circulation
vanishes at the eastern boundary. Positive values (red) correspond to clockwise
circulations and negative values (blue) to anticlockwise circulations.

for the interior flow, but a western boundary current is needed to close the
circulation. The Sverdrup balance integration results in a realistic large-
scale gyre circulation in the tropical, subtropical and subpolar oceans (Fig. 6.6).
However something is not well represented and totally missed by the
Sverdrup flow. Sverdrup flow predicts an interior flow in balance with the
input of vorticity by the wind stress; but the interior meridional flow must
be compensated at some level somewhere to comply with mass conserva-
tion. This, we will see, is accomplished by a narrow and intense boundary
current.

In the Southern Ocean, the zonal integration of the Sverdrup balance
does not apply. We will see in Chapter ?? what is so special about the
Southern Ocean.
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14.1 The Flat-BottomWind-Driven Circulation 453

Fig. 14.6 Stream function  in Sv D 106 m3 s!1 calculated from the Sverdrup relation (14.19)
and the windstress curl shown in Figure 14.4. Westward integration of (14.19) starts at the eastern
boundary of each basin or at 30ı E with  D 0 as boundary condition. The figure excludes the
Southern Ocean because here the Sverdrup regime breaks down as discussed in Chapter 16

restriction) because the flow normal to the coast must vanish. Hence

 .x; y/ D ! 1
ˇ

xEZ

x

r: " !0dx

Figure 14.6 shows the transport stream function  calculated with realistic wind-
stress curl as shown in Figure 14.4. One finds indeed the large-scale gyre circulation
in the tropical, subtropical, and subpolar ocean basins as in the schematic circulation
shown in Figure 14.1. However, note that in the Southern Ocean, the zonal inte-
gration of the Sverdrup relation (14.19) does not apply. This issue will be further
discussed in Chapter 16. In the example in the box on p. 454, the zonal flow fol-
lows the direction of the windstress. This is because of the sinusoidal nature of the
windstress profile where !@2! .x/0 =@y2 # ! .x/0 . Sverdrup’s original work studied the
circulation due to the observed equatorial wind field in the Pacific, and Sverdrup was
the first to explain why the North Equatorial Counter Current (NECC) runs against
the wind. This feature can also be seen in Figure 14.6.

Stommel Regime

In the subtropical gyre of the northern hemisphere, the Ekman pumping is downward
everywhere and thus, from (14.16), vg is negative in the Sverdrup regime. Likewise,
r: " !0 is negative, and the total transport V is southward for the Sverdrup solution.
Clearly, these conditions cannot hold for the entire basin. Somewhere the bottom
Ekman layer must come into play to allow for a northward vg and a total northward
transport V . This compensation will take place in a western boundary current.

For a positive vg, the vertical geostrophic pumping, given by (14.14), is down-
ward, and the vertical Ekman velocity in the bottom layer has to compensate it.

Figure 6.6: Streamfunction ψ (Sv ≡ 106 m3 s−1) calculated from the Sverdrup
relation and a climatological wind stress curl. Westward integration starts at 30◦

E with ψ = 0 as boundary condition. [from Olbers et al. (2012)]
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6.2.3 The boundary: Adding a return flow

We need to close the circulation induced by the interior Sverdrup flow.
The interior flow was developed for the large scale. We can thus suppose
that the return flow will occur in a narrow boundary layer somewhere.
Where will this be? Western or eastern side of the basin?

Take the full Stommel model

β
∂ψ

∂x
= curlzτT − r∇2ψ. (6.54)

and consider a square domain of side L and rescale variables as follows

x = L x̂ τ = τ0 τ̂

y = L ŷ ψ =
τ0

β
ψ̂

Hatted variables are non-dimensional and they are O(1) quantities in the
interior.

The Stommel model becomes

β
∂ψ̂

∂x̂
τ0

βL
= curlzτ̂T

τ0

L
− r∇2ψ̂

τ0

βL2

∂ψ̂

∂x̂
= curlzτ̂T −

r
βL
∇2ψ̂

εs = r
βL � 1 as shown by (6.50) for the large-scale flow. We thus write

a solution for the interior, where friction is small, and a solution for the
boundary, where frictional effects will be large:

ψ(x, y) = ψI(x, y) + φ(x, y)

where φ is a boundary layer correction.

The interior solution

In the interior the flow is described by ψI(x, y) in the limit where εs =
r

βL � 1
∂ψI

∂x
= curlzτT (6.55)

The solution of the Sverdrup interior is

ψI(x, y) =
x∫

0

curlzτ(x′, y)dx′ + g(y) (6.56)
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where g(y) is an arbitrary function. Given the streamfunction definition
(vI = ∂ψI/∂x; uI = −∂ψI/∂y), the corresponding velocities are

vI = curlzτ

uI = −∂y

x∫
0

curlzτ(x′, y)dx′ − ∂g(y)
∂y

Let’s simplify our forcing and take the wind stress curl as zonally uni-
form, so that

τ
y
T = 0, τx

T = −cos(πy) (6.57)

so that the curl vanishes at y = 0 and y = 1 (Fig. 6.7). The curl in this
case will be curlzτT = −πsin(πy). For this example, typical of subtropical
latitudes, the wind stress is imparting a negative input of vorticity into the
ocean everywhere.

The Sverdrup interior flow is

ψI(x, y) =

x∫
0

curlzτ(x′, y)dx′ + g(y)

ψI(x, y) =

x∫
0

[
− πsin(πy)

]
dx′ + g(y)

ψI(x, y) = x
[
− πsin(πy)

]
+ g(y)

We can define the arbitrary function of integration as C(y) = −g(y)/curlzτT.
So that our solution becomes

ψI(x, y) = x
[
− πsin(πy)

]
−
[
C(y)curlzτT

]
ψI(x, y) = x

[
− πsin(πy)

]
+ C(y)

[
πsin(πy)

]
ψI(x, y) = π

[
C(y)− x

]
sin(πy)

If C is a constant, then the zonal flow is C curlzτ. Now, depending on
C, we can either satisfy ψ = 0 at x = 0 or at x = 1

ψI(0, y) = πC sin(πy) = 0 if C = 0 (6.58)
ψI(1, y) = π(C− 1) sin(πy) = 0 if C = 1 (6.59)

We cannot satisfy both zonal boundary conditions of ψ = 0. And so a
choice will have to be made on C, and more importantly on where the
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Western boundary layer              Wind stress             Eastern boundary layer 

Fig. 14.3 Two possible Sverdrup flows,  I , for the wind stress shown in the centre.
Each solution satisfies the no-flow condition at either the eastern or western bound-
ary, and a boundary layer is therefore required at the other boundary. Both flows
have the same, equatorward, meridional flow in the interior. Only the flow with the
western boundary current is physically realizable, however, because only then can
friction produce a curl that opposes that of the wind stress, so allowing the flow to
equilibrate.

From Vallis (2006)

From Vallis (2006)

Figure 6.7: Two possible Sverdrup flows, ψI , for the given wind stress. Each
solution satisfies the no-flow condition at one boundary, either east or west. Both
solutions have the same meridional interior flow. Which one is physically plausi-
ble? [from Vallis (2006)]

boundary layer will exist in order to satisfy the remaining boundary con-
dition!

We could suppose the solution at the left of Fig.6.7, because the interior
flow would go the same direction as the wind torque driving it. Friction
should provide opposite torque in order to balance the angular momen-
tum. An eastern boundary (solution at the right of Fig.6.7) would not be
able to provide an anti-clockwise angular momentum (vorticity) capable
of balancing vorticity input by the surface stress. Only the Western Bound-
ary Current seems able to provide the required frictional force. We will
expand on this ‘vorticity argument’ in Section 6.4

The boundary solution (asymptotic matching)

Let’s now stretch the x-coordinate near the boundary, where φ(x, y) varies
very rapidly in order to satisfy the boundary condition. The boundary
could be at x = 0 or at x = 1:

x = ε α or x− 1 = ε α. (6.60)

α is the stretched coordinate, having values O(1) in the boundary and ε is
a small parameter. We now suppose φ(α, y) and write:

∂x(ψI + φ) + εs∇2(ψI + φ) = curlzτT (6.61)

∂xψI + εs(∇2ψI +∇2φ) +
1
ε

∂φ

∂α
= curlzτT (6.62)

(6.63)
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α α

x = x − 1 =

φ = ( α, y ) φ = ( α, y )

Figure 6.8: Two possible boundary solutions. Only the one on the western side
decays towards the interior and satisfies the condition that φ = 0 in the interior.
The solution requires that α > 0 and x = εα.

where ∇2φ = 1
ε2

∂2φ
∂α2 +

∂2φ
∂y2 . We know that φI satisfies Sverdrup balance, so

the solution becomes

εs(∇2ψI +
1
ε2

∂2φ

∂α2 +
∂2φ

∂y2 ) +
1
ε

∂φ

∂α
= 0. (6.64)

We now make the simplest choice and choose ε = εs, so that the leading
order balance is

∂2φ

∂α2 +
∂φ

∂α
= 0. (6.65)

The solution of which is φ = A(y) + B(y)e−α.
The solution grows in the negative direction of α. But the solution can-

not grow towards the interior or it would violate our assumption that φ is
small in the interior. Hence, we impose α > 0 and A(y) = 0. This implies
the choice of x = εα so that α > 0 for x > 0. The boundary layer is at
x = 0: a western boundary layer, and it decays eastward for increasing α,
towards the interior (Fig. 6.8).

We now choose C = 1, so that ψI = 0 at x = 1, and the solution for the
given wind stress is

ψI = π(1− x) sin(πy) (6.66)

This satisfies the eastern boundary condition (ψ = 0 at x = 1).
B(y) will now satisfy the other boundary condition in order to

ψ = ψI + φ = 0 at x = 0. (6.67)
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At x = 0:
ψ = π sin(πy) + φ = 0 (6.68)

Given that φ = B(y)e−α, we have, at x = 0

ψ = π sin(πy) + B(y) = 0, (6.69)

which readily implies that B(y) = −π sin(πy). The boundary layer cor-
rection is thus

φ = −π sin(πy)e−x/εs . (6.70)

The boundary layer correction is thus proportional to the interior wind
stress, as it has to balance that input of vorticity.

The full solution is thus

ψ = ψI + φ = π sin(πy)− xπ sin(πy)− πsin(πy)e−x/εs (6.71)

= π sin(πy)
(

1− x− e−x/εs
)

. (6.72)

The dimensional solution (remember that ψ = ψ̂ τ0
β ; τ = τ̂τ0; y = ŷL; x =

x̂L):

ψ =
τ0

β
π
(

1− x
L
− e−x/(Lεs)

)
sin

πy
L

(6.73)

Given the chosen wind stress, this is a single gyre solution (Fig. 6.9), and
for a realistic global wind stress the solution is shown in Fig. 6.11.

The boundary layer width

What is the width δ of the western boundary layer? In the interior, friction
is small, and the balance is between wind stress and the β-effect:

|rζ| � |βv|. (6.74)

With r = f δ
H , this means that f δ

HL � β. For friction to be small, we also
have that

εs =
r

Lβ
� 1 or

r
β
� L, (6.75)

where r measures bottom friction and L denotes the length scale of zonal
variations of the geostrophic current.

However, when L becomes smaller, representing dynamics in the bound-
ary layer, we have a different balance:

r
β
∼ L, (6.76)
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Figure 6.9: Solutions of the Stommel model for a single-gyre wind-induced flow
for different values of ε. Note that for ε=0 the model reduces to the Sverdrup
balance.

Figure 6.10: Solutions of the Stommel model for a single-gyre wind-induced flow
for different values of ε. Plotted are the streamfunction ψ and the meridional
velocity v = ∂ψ/∂x at the centre of the gyre.

and now L = O(δ) so that the width of the Stommel boundary layer is

δS =
r
β

. (6.77)
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456 14 The Wind-Driven Circulation

Fig. 14.7 Stream function  in Sv D 106 m3 s!1 calculated from the Stommel equation (14.23)
and the realistic windstress curl shown in Figure 14.4.  D 0Sv was used as boundary condition
and a boundary layer width of ı D 100 km

where again R was assumed constant. This is STOMMEL2’s equation. It has a much
simpler boundary condition,  D const, than the equivalent equation (14.22) for
the surface displacement. Another property of the Stommel equation concerns the
exception of the equator: whereas the Ekman and geostrophic theories, used above
to determine the current profile and sea surface height, require nonzero f , we may
abandon this restriction when considering balance equations for the total transport
(this also applies to the Sverdrup theory, see the previous section).

Figure 14.7 shows a numerical solution of the Stommel equation (14.23) for the
realistic windstress curl which was also used to display the global Sverdrup solution
in Figure 14.6. In contrast to the Sverdrup solution, the Stommel solution now sat-
isfies the boundary condition  D 0. It does not deviate much from the Sverdrup
relation outside boundary layers. However, the tropical gyres in all ocean basins are
much weaker due to the impact of the bottom friction. Again, the numerical solu-
tion of the Stommel equation (14.23) does not yield realistic results in the Southern
Ocean. This issue will be further discussed in Chapter 16. The incorporation of lat-
eral friction leads to the Stommel–Munk model. It is discussed in the box on p. 457.

14.1.6 TheWestern Boundary Current

The total transport in the Sverdrup regime occurs between the eastern edge of the
western boundary layer, x D ı, and the eastern coast, x D 0. The total transport
is there  .x D ı; y/ at the latitude y. If it is nonzero, the corresponding transport
must be returned within the boundary layer. This transport is thus prescribed by the
wind system outside the boundary layer, i. e. in the Sverdrup regime. Clearly, because
the boundary layer width is much smaller than the basin width, the currents in the
boundary layer have to be much stronger than in the Sverdrup regime.
2 HENRY MELSON STOMMEL, *1920 in Wilmington †1992 in Boston, oceanographer.

Figure 6.11: Streamfunction ψ (in Sv) computed from the Stommel model with
realistic wind stress curl and a boundary layer width δ = 100 km. [from Olbers
et al. (2012)]

Within this narrow boundary layer, vg > 0 and v > 0, balancing the in-
terior Sverdrup flow. The total transport in the Sverdrup regime occurs
between the eastern edge of the western boundary layer, x = δS, and the
eastern coast, x = 1. A corresponding transport must be compensated
and returned within the boundary layer. This transport is thus prescribed
by the wind outside the boundary layer, the Sverdrup regime. Because
the boundary layer width is much smaller than the basin width, the cur-
rents in the boundary layer have to be much stronger than in the Sverdrup
regime, as observed.
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An f -plane solution

In the Stommel model, dissipation of vorticity arises from bottom fric-
tional stresses within a bottom boundary layer.

In the case of a constant f , so that β = ∂ f
∂y = 0, the input of vorticity

from the wind simply balances the opposing frictional dissipation every-
where. This leads to symmetric solutions, which are not realistic.

β
∂ψ

∂x︸︷︷︸
0 for

the f -plane

= Fτ(x, y)︸ ︷︷ ︸
wind input
of vorticity

−r∇2ψ︸ ︷︷ ︸
frictional dissipation

of vorticity

. (6.78)

The vertical geostrophic velocity vanishes in the f -plane, and the two Ek-
man induced vertical velocities have to compensate each other. This is
possible if

curlzτ̃T = curlzτ̃B =
d
2

ζg (6.79)

There is no boundary layer solution, and the balance is achieved every-
where within the basin (see Fig. 6.12).

If, conversely, β 6= 0, in the interior we find a balance between change
in planetary vorticity and input of vorticity. In the narrow western bound-
ary layer, the fluid column changes again its planetary vorticity but the
source of vorticity is from frictional dissipation.

But given that the return flow was found on a western boundary layer,
is bottom drag realistic?

b
!
MðyÞ #

!
sðxÞ=f

""
¼ v=vx

!
sðyÞ

"
# v=vy

!
sðxÞ

"

¼ }curl s}

(7.45)

where the meridional (south-north) mass trans-
port M(y) is the vertical integral of the meridi-
onal velocity v times density r. The second
term on the left side is the meridional Ekman
transport. Thus, the meridional transport in the
Sverdrup interior is proportional to the wind
stress curl corrected for the Ekman transport.

Themeridional transport M(y) is the Sverdrup
transport. A global map of the Sverdrup trans-
port integrated from the eastern to the western
boundary is shown in Figure 5.17. The size of
the integral at the western boundary gives the
western boundary current transport since
Sverdrup’s model must be closed with a narrow
boundary current that has at least one additional
physical mechanism beyond those in the
Sverdrup balance (a shift in latitude because of
water column stretching driven by Ekman trans-
port convergence). Physics of the boundary
currents are discussed in the following sections.

7.8.2. Stommel’s Solution: Westward
Intensification and Western Boundary
Currents

In the late 1940s, Henry Stommel (1948)
added simple linear friction to Sverdrup’s

model of the gentle interior flow in a basin
with eastern and western boundaries (Section
7.8.1). Mathematically this is an addition of
dissipation of potential vorticity Q on the
right-hand side of Eq. (7.37). The remarkable
result was that the returning flow can only be
in a narrow jet along the western boundary
(Figure S7.33). The potential vorticity balance
in this jet is change in planetary vorticity
balanced by bottom friction.

Figure S7.33a shows the ocean circulation if
there were no latitudinal variation in Coriolis
parameter (no b-effect; Stommel, 1965). This
is the solution if Earth were a rotating, flat
disk with westerlies in the north and trades
in the south. In this solution, the potential
vorticity input from the wind cannot be
balanced by a change in latitude, so the flow
builds up relative vorticity (negative sign)
that is balanced throughout the basin by
bottom friction; the Sverdrup balance (Eq.
7.40) cannot apply. In Figure S7.33b, for the
realistic spherical Earth with a b-effect, the
flow is southward throughout the interior
(Sverdrup balance), and returns northward in
a swift jet on the western boundary. This
idealized circulation resembles the Gulf
Stream and Kuroshio subtropical gyres in
which the Gulf Stream and Kuroshio are the
narrow western boundary currents returning
all southward Sverdrup interior flow back to
the north.

1000 km
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1000 km 0

FIGURE S7.33 Stommel’s wind-driven circulation solution for a subtropical gyre with trades and westerlies like the
central latitudes of Figure S7.32: (a) surface height on a uniformly rotating Earth and (b) westward intensification with the
b-effect. After Stommel (1965).
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Figure 6.12: Stommel’s wind-driven circulation solution for a subtropical gyre
with trades and westerlies. (a) Transport streamfunction ψ on a uniformly
rotating Earth ( f = f0) and (b) westward intensification with the β-effect
( f = f0 + βy). [from Stommel (1948)]
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Figure 6.13: (left panels) Streamfunction ψ and (right panels) sea-surface height
η for a symmetrical gyral wind field (à la Stommel). In the case of no rotation
f = 0 winds simply drive a symmetric circulation, just as you might expect
from stirring a coffee cup. If f =const and β = 0 as in a flat Earth, there is
again a symmetric solution with fluid rotating in geostrophic balance. Western
intensification requires Earth to be a spinning sphere with planetary vorticity
varying with latitude. [from Stommel (1948)]
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6.3 The Munk model

An Ekman bottom drag is not appropriate to balance the interior wind-
driven circulation. This is because the circulation does not reach all the
way down to the bottom and some other form/term is required to balance
the interior transport. An extension of the Stommel problem was formu-
lated by Munk, who introduced lateral harmonic viscosity.

Munk does not use a bottom drag and, given that the boundary layer
is on a side, introduces horizontal viscosity. We can start from the set of
primitive equations and our fluid is governed by

− f v = −∂φ

∂x
+

∂

∂x

(νh
ρ0

∂u
∂x

)
+

∂

∂y

(νh
ρ0

∂u
∂y

)
+

∂

∂z

(νv

ρ0

∂u
∂z

)
(6.80)

f u = −∂φ

∂y
+

∂

∂x

(νh
ρ0

∂v
∂x

)
+

∂

∂y

(νh
ρ0

∂v
∂y

)
+

∂

∂z

(νv

ρ0

∂v
∂z

)
(6.81)

0 =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

(6.82)

or in a simpler form

f× u = −∇φ +
1
ρ 0
∇ · (ν∇u) (6.83)

∇3 · u = 0 (6.84)

which are very similar to the set of equations used by Stommel (Eq. 6.21),
but now we have introduced a term related to horizontal turbulent viscos-
ity. These will be the key to introduce a frictional dissipation similar to the
Stommel bottom drag.

Again, assume a vertically-integrated ocean, let’s vertically integrate
and pose:

Φ =

z∫
−H

φ dz; u =

z∫
−H

ρ0u dz; v =

z∫
−H

ρ0v dz (6.85)

we find

− f v = −∂Φ
∂x

+ νh∇2u +

z∫
−H

∂

∂z
νv

∂u
∂z

dz (6.86)

f u = −∂Φ
∂y

+ νh∇2v +

z∫
−H

∂

∂z
νv

∂v
∂z

dz (6.87)

0 =
∂u
∂x

+
∂v
∂y

(6.88)
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We have set w = 0 at z = 0 and z = −H, and note that the stress tensor
was defined as

τx =
(

νv
∂u
∂z

)
z=0
−
(

νv
∂u
∂z

)
z=−H

(6.89)

τy =
(

νv
∂v
∂z

)
z=0
−
(

νv
∂v
∂z

)
z=−H

. (6.90)

Ignoring bottom contributions this yields

− f v = −∂Φ
∂x

+ νh∇2u + τx
T (6.91)

f u = −∂Φ
∂y

+ νh∇2v + τ
y
T (6.92)

0 =
∂u
∂x

+
∂v
∂y

. (6.93)

Now, as usual, take the curl of the horizontal momentum equations
and use a streamfunction for the non-divergent flow to obtain:

β
∂ψ

∂x
= curlzτT + νh∇4ψ (6.94)

The operator νh∇4 parameterizes viscosity as a biharmonic turbulent vis-
cosity. This simple model captures a western boundary ’return’ current
and an interior Sverdrup flow. The simple model points to the role of the
wind stress curl, and not the wind per se. The strength of the return current
is dictated by dynamics outside of the boundary layer itself, i.e. the inte-
rior wind stress curl. This explains why some boundary currents (the Gulf
Stream) are stronger than others (the Brazil current), which are driven by
weaker wind stress curl (Fig. 6.14).
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           WBC: 
BRAZIL CURRENT

         WBC: 
GULF STREAM

      WBC: 
KUROSHIO

   WBC:  EAST
AUSTRALIAN
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ECS: PAC
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     WBC: 
AGULHAS

ACC
ACC

Subtropical Gyres
Equatorial and Tropical Circulations
Intergyre and/or Interbasin Exchanges
Polar and Subpolar Current Systems

Fig. 14.1 A schema of the main currents of the global ocean. Key: STG – SubTropical
Gyre; SPG – SubPolar Gyre; WBC – Western Boundary Current; ECS – Equatorial Current
System; NA – North Atlantic; SA – South Atlantic; NP – North Pacific; SP – South Pacific;
SI – South Indian; ACC – Antarctic Circumpolar Current; ATL – Atlantic; PAC – Pacific.
The figure is a qualitative, and not quantitative, representation of the actual flow.

From Vallis (2006)

From Vallis (2006)

Figure 6.14: A schema of the main currents of the global ocean [from Vallis
(2006)].
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6.3.1 Interior and boundary solutions

The vorticity equation now reads

β
∂ψ

∂x
= curlzτT + νh∇2ζ = curlzτT + νh∇4ψ . (6.95)

This is the so-called MUNK MODEL. We need two boundary conditions
at each wall because of the higher-order term. One is ψ = 0 to satisfy
no-normal flow condition. The second boundary condition could be:

1. Zero vorticity (ζ = 0). Since ψ = 0 along the boundary, this is equiv-

alent to ∂2ψ
∂n2 = 0, where ∂

∂n
denotes a derivative normal to the bound-

ary. At x = 0, this condition becomes ∂v
∂x = 0: there is no horizontal

shear at the boundary. This is called a ’free-slip’ condition.

2. No flow along the boundary. This is equivalent to ∂ψ
∂n = 0. At x = 0,

this condition becomes v = 0. This is called a ’no-slip’ condition.

Either could be used, and we will solve the ’no-slip’ problem. If we use the
same wind stress

τx = −cos(πy/L), (6.96)

and non-dimensionalize (6.95) in a similar way to the Stommel problem

∂ψ̂

∂x̂
− εM∇4ψ̂ = curlzτ̃T. (6.97)

Here εM = ν/(βL3). Again, the full solution will be the contribution of a
western boundary layer correction and an interior Sverdrup flow

ψ̂ = ψI + φ(α, y). (6.98)

The Munk problem does become

−εM

(
∇4ψI +

1
ε4

∂4φ

∂α4

)
+

1
ε

∂φ

∂α
= 0. (6.99)

Of which the leading order balance is

−∂4φ

∂α4 +
∂φ

∂α
= 0. (6.100)

Subject to suitable boundary conditions and the interior Sverdrup solution

ψI = π(1− x)sin(πy), (6.101)
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Figure 6.15: Solutions of the Munk model for a single-gyre wind-induced flow for
different values of ε. Note that for ε=0 the model reduces to the Sverdrup balance.

where we have taken C = 1 as in Eq.(6.59) of the Stommel problem, the
solution to the Munk problem is (a non-trivial algebraic exercise ...):

ψ̂ = π sin(πŷ)

{
1− x̂− e−x̂/(2ε)

[
cos

(√
3x̂

2ε

)
+

1− 2ε√
3

sin

(√
3x̂

2ε

)]
+ εe(x̂−1)/ε

}
.

(6.102)
The solution, for different values of ε, is shown in Fig. 6.15.

The Munk viscous boundary layer brings the tangential and the normal
velocity to zero (Fig. 6.16).

Page 67



Figure 6.16: Solutions of the Munk model for a single-gyre wind-induced flow
for different values of ε. Plotted are the streamfunction ψ and the meridional
velocity v = ∂ψ/∂x at the centre of the gyre. Note that the Munk model brings
the velocity v to zero at the western boundary.

The boundary layer width

What is the thickness of the Munk boundary layer? We have the following
balance

β
∂ψ

∂x
∼ ν∇4ψ (6.103)

β
U
L2 ∼ ν

U
L5 (6.104)

β ∼ ν

L3 , (6.105)

in the boundary layer lateral diffusion of momentum will be important
and will extract momentum imparted by the wind stress. If lateral viscos-
ity is important, the length scale will be L = O(δ), and so the boundary
layer width is given by

δM ∼
( ν

β

)1/3
(6.106)
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Figure 6.17: Franklin wondered why journeys towards the east were faster than
return trips on his voyages across the Atlantic Ocean between the Colonies and
Europe. His curiosity led him to be the first to chart the Gulf Stream on 1786.
Franklin was talking to his cousin, Timothy Folger, who was the captain of a
merchant ship. He asked why it took ships like Folger’s so much less time to reach
America than it took official mail ships. It struck Folger that the British mail
captains must not know about the Gulf Stream, with which he had become well-
acquainted in his earlier years as a Nantucket whaler. Folger told Franklin that
whalers knew about the ”warm, strong current” and used it to help their ships
track and kill whales. But the mail ships “were too wise to be counselled by simple
American fishermen” and kept sailing against the current, losing time as they did
so.
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Figure 6.18: A satellite image of the Gulf Stream.

Neither the Stommel nor the Munk model are accurate representations
of the real ocean. We need to include non-linearities and topographic ef-
fects to improve our solution.

The non-linear Stommel-Munk problem is

∂ζ

∂t
+ J(ψ, ζ) + β

∂ψ

∂x
= curlzτT − r∇2ψ + ν∇2ζ. (6.107)

And the steady non-linear Stommel-Munk problem is

J(ψ, ζ) + β
∂ψ

∂x
= curlzτT − r∇2ψ + ν∇2ζ. (6.108)
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The need for friction

Consider the steady barotropic flow

D ( f + ζ)

D t
= F (6.109)

satisfying
u · ∇q = curlzτT + Friction , (6.110)

where q = ∇2ψ + βy and the last term on the rhs represents frictional ef-
fects. u is divergent-free and we can integrate the lhs over some area A
between two closed streamlines, ψ1 and ψ2. Using the divergence theo-
rem2 : ∫

A
∇ · (uq)dA =

∮
ψ1

uq · n dl −
∮

ψ2

uq · n dl = 0. (6.111)

Here n is the unit vector normal to the streamline so that u · n = 0. The
integral of the wind-stress curl over the area A will not be zero. This means
that a balance between wind-stress curl and friction can only be achieved
if every closed contour passes through a region where frictional effects are
non-zero, and are important somewhere along the streamline path.

Thus, in the Stommel and Munk models, every streamline must pass
through the frictional western boundary layer.

2Here we use the 2D divergence theorem for a vector field F(x, y):
∫∫

A div F dA =∮
∂A F · n dl
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6.4 Westward intensification

PV balance interpretation

How does the potential vorticity balance work in Munk’s model (which is
combined with Sverdrup’s model)?

Why do we find the boundary current on the western side rather than
the eastern side, or even within the middle of the basin (if considering
Stommel’s bottom friction)?

In the Sverdrup interior of a subtropical gyre, when the wind causes
Ekman pumping, the water columns are squashed, they move equator-
ward to lower planetary vorticity.

To return to a higher latitude, there must be forcing that puts the higher
vorticity back into the fluid. This cannot be in the form of planetary vor-
ticity, since this is already contained in the Sverdrup balance. Therefore,
the input of vorticity must affect the relative vorticity.

Consider a western boundary current for a Northern Hemisphere sub-
tropical gyre, with friction between the current and the side wall (Munk’s
model). The effect of the side wall is to reduce the boundary current ve-
locity to zero at the wall. Therefore, the boundary current has positive
relative vorticity. This vorticity is injected into the fluid by the friction
at the wall, and allows the current to move northward to higher Coriolis
parameter f .

On the other hand, if the narrow jet returning flow to the north were
on the eastern boundary, the side wall friction would inject negative rela-
tive vorticity, which would make it even more difficult for the boundary
current fluid to join the interior flow smoothly.

Therefore, vorticity arguments require that frictional boundary cur-
rents be on the western boundary. You can go through this exercise for
subpolar gyres as well as for both types of gyres in the Southern Hemi-
sphere and will find that a western boundary current is required in all
cases!
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How does the potential vorticity balance
work in Munk’s model (which is combined
with Sverdrup’s model)? Why do we find the
boundary current on the western side rather
than the eastern side, or even within the middle
of the basin (if considering Stommel’s bottom
friction)? In the Sverdrup interior of a subtrop-
ical gyre, when the wind causes Ekman pump-
ing, the water columns are squashed, they
move equatorward to lower planetary vorticity.

To return to a higher latitude, there must be
forcing that puts the higher vorticity back into
the fluid. This cannot be in the form of planetary
vorticity or very, very narrow wind forcing,
since the first is already contained in the
Sverdrup balance, and the second is unphysical
except in one or two extremely special locations
(e.g., Arabian coast, Chapter 11). Therefore, the
input of vorticity must affect the relative
vorticity.
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FIGURE S7.35 (a) Vorticity
balance at a western boundary,
with side wall friction (Munk’s
model). (b) Hypothetical eastern
boundary vorticity balance,
showing that only western bound-
aries can input the positive relative
vorticity required for the flow to
move northward.
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Figure 6.19: (a) Vorticity balance at a western boundary, with side wall friction
(Munk’s model). (b) Hypothetical eastern boundary vorticity balance, showing
that only western boundaries can input the positive relative vorticity required for
the flow to move northward. [from Talley et al. (2011)]
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Western intensification understood as westward drift

Here we’ll give a slightly different explanation of why the boundary cur-
rent is in the west. It is not really a different explanation, because the cause
is still differential rotation, but we’ll think about it quite differently. We’ll
see the effect of differential rotation is to make patterns propagate to the
west, and hence the response to the wind’s forcing piles up in the west
and produces a boundary current there.4.3 WESTERN INTENSIFICATION 59..
y

A
B

Initial displacement

Later

 displacement

Fig. 4.5 If parcel ‘A’ is displaced northwards then its clockwise spin increases,

causing the northwards displacement of parcels that are to the west of ‘A’. A

similar phenomena occurs if parcel ‘B’ is displaced south. Thus, the initial

pattern of displacement propagates westward.

4.3.2 Westward drift

In this section we’ll give a slightly different explication of why the boundary
current is in the west. It is not really a different explanation, because the
cause is still differential rotation, but we’ll think about it quite differently.
We’ll see effect of differential rotation is to make patterns propagate to the
west, and hence the response to the wind’s forcing piles us in the west and
produces a boundary current there.

We noted above that the component of the Earth’s rotation in the local
vertical also increases as we move northwards or, putting it a little informally,
the spin increases northwards. (The spin is also called the vorticity.) Now
consider a parcel of fluid sitting in the ocean. It may be spinning from two
causes, namely because it itself is spinning relative to the Earth, and because
the Earth itself is spinning. If that parcel moves and if no external forces act
upon it then the total spin of the fluid parcel will be preserved. Its local spin
relative to the Earth must therefore change, to compensate for changes in the
Earth’s spin.

Let’s now imagine a line of parcels, as illustrated in Fig. 4.5. Suppose
we displace parcel ‘A’ northwards. Because the Earth’s spin is anti-clockwise
(looking down on the North Pole) and this increases as the parcel moves
northward, then the parcel must spin more in a clockwise direction in order
to preserve its total spin. This spin will have the effect of moving the fluid that
is just to west of the original parcel northwards, and then this will spin more
clockwise, moving the fluid to its left northwards, and so on. The northwards
displacement thus propagates westward, whereas parcels to the east of the
original displacement are returned to their original position so that there is
no systematic propagation to the east. Similarly, a parcel that is displaced
southwards (parcel B) also causes the pattern to move westwards. This is
a very idealized example — in fact we have just described the westward

Figure 6.20: If parcel A is displaced northwards then its clockwise spin increases,
causing the northwards displacement of parcels that are to the west of A. A sim-
ilar phenomena occurs if parcel B is displaced south. Thus, the initial pattern of
displacement propagates westward. [from Vallis (2006)]

Let’s now imagine a line of parcels (Fig. 6.20). Suppose we displace
parcel ‘A’ northwards. Because the Earth’s spin is anti-clockwise (looking
down on the North Pole) and this increases as the parcel moves north-
ward, then the parcel must spin more in a clockwise direction in order to
preserve its total vorticity

q = f + ζ. (6.112)

This spin will have the effect of moving the fluid that is just to west of
the original parcel northwards, and then this will spin more clockwise,
moving the fluid to its left northwards, and so on. The northwards dis-
placement thus propagates westward, whereas parcels to the east of the
original displacement are returned to their original position so that there
is no systematic propagation to the east. Similarly, a parcel that is dis-
placed southwards (parcel B) also causes the pattern to move westwards.
We have just described the westward propagation of a simple Rossby wave,
but the same effect occurs with more complex patterns and in particular,
with the gyre as a whole.
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Thus, imagine that an east-west symmetric gyre is set up, with the
winds and friction in equilibrium, as in an f -plane. Differential rotation
then tries to move the pattern westward, but of course the entire pattern
cannot move to the west because there is a coastline in the way! The gyre
thus squashes up against the western boundary creating an intense west-
ern boundary current.

This way of viewing the matter serves to emphasize that it is not fric-
tional effects that cause western intensification; rather, frictional effects
allow the flow to come into equilibrium with an intense western bound-
ary current, with the ultimate cause being the westward propagation
due to differential rotation.

In fact, the location of the boundary layer, on the west, does not depend
on the sign of the wind-stress curl (the sign is reversed in a subpolar gyre
and the flow is southward within a western boundary current) nor on the
sign of the Coriolis parameter (think about what happens in the southern
hemisphere where f < 0). The western location depends on β, which is
always positive (Fig. ??). What would happen if we change the direction
of rotation of the Earth? β would be negative, Rossby waves would travel
eastward and the boundary layer would be located on the eastern side of
the basin.
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The Stommel & Munk models of the Wind-Driven Circulation

– The Model

1. The model uses the vertically integrated planetary-geostrophic
equations (or a homogeneous fluid) with nonlinearities ne-
glected.

2. The model uses a flat bottomed ocean.

3. • In the Stommel model, bottom friction is parameterized
by a linear drag.

• In the Munk model, lateral friction is parameterized by a
Newtonian harmonic viscosity .

– Solution

1. The transport in the Sverdrup interior is equatorwards for an
anti-cyclonic wind-stress-curl.

2. The Sverdrup transport is exactly balanced by a poleward
transport in a westward boundary layer.

3. The boundary layer satisfies mass conservation, and must be a
western boundary layer for friction to provide a force of oppo-
site sign as the motion in the interior.

The boundary layer is a frictional boundary layer.

4. The western location does not depend on the sign of the Cori-
olis parameter nor on the sign of the wind stress. The location
does depend on the sign of β, and so on the direction of rota-
tion of the Earth.

5. • In the Stommel model the balance in the western bound-
ary layer is between r∇2ψ and β

∂ψ
∂x . The boundary layer

width is δS =
(

r
β

)
. If r, the inverse frictional time, is 1/20

days−1, then δS ≈60 km.

• In the Munk model the balance in the western bound-
ary layer is between ν∇4ψ and β

∂ψ
∂x . The boundary layer

width is δM =
(

ν
β

)1/3
.
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6.5 Topographic effects on western boundary cur-
rents

We have so far assumed a flat ocean bottom in order to derive the equa-
tions of the Sverdrup, Stommel and Munk models. This allowed us to
eliminate the depth-integrated pressure gradient force when taking the
curl of the depth-integrated momentum budget. But the ocean is cer-
tianly not flat, and sloping sidewalls will actually change the behaviour
of western boundary currents. They can even become inviscid if the flow
is preserving its potential vorticity by flowing along f /h contours. If the
ocean is flat, then a meridional flow within a boundary layer exists thanks
to frictional effects permitting the flow to cross f contours. If sidewalls
are sloping then the flow can move quasi-northward (along f /h contours)
preserving its potential vorticity.

6.5.1 Bottom pressure stress

We now consider the effects of topography and stratification on the cir-
culation of a wind-driven gyre. Interactions of pressure with a variable
topography can generate a meridional flow. The vorticity balance of a
depth-integrated flow now possesses and extra term describing the influ-
ence of topography on the flow.

Let’s define h = h(x, y) and let’s consider a stratified ocean in which
density is not a constant. The momentum equation in planetary-geostrophic
approximation is

f × u = −∇φ + F (6.113)

where F represents both frictional and wind forcing terms. Integrating this
over the entire depth of the water column

f × u = −
0∫

ηB

∇φ dz + F (6.114)

where x =
0∫

ηB

x dz. Now remember the Leibnitz rule:

∇
0∫

ηB

φ dz =

0∫
ηB

∇φ dz + φ0∇ηT − φB∇ηB, (6.115)
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where the second term on the rhs vanishes given that ηT = z = 0 at the
top. For our purpose:

0∫
ηB

∇φ dz = ∇
0∫

ηB

φ dz + φB∇ηB, (6.116)

and so we write the vertically integrated momentum equations as

f × u = −∇
0∫

ηB

φ dz− φB∇ηB + F. (6.117)

The second term on the rhs is the stress in the fluid due to the correlation
between pressure gradient and topography. It is called bottom form drag.

If we rewrite the vertical integral of the pressure:

0∫
−h

φ dz = (φz)|0−h−
0∫
−h

z(∂φ/∂z)dz = φBh+
0∫
−h

zρg dz = φBh+ E, (6.118)

where we have used hydrostasy ∂φ/∂z = −ρg and defined the vertically-

integrated potential energy E = g
0∫
−h

zρ dz.

Our vertically integrated momentum thus become

f × u = −∇
0∫

ηB

φ dz− φB∇ηB + F (6.119)

= −∇
0∫

ηB

φ dz + φB∇h + F (6.120)

= −∇
(

φBh + E
)
+ φB∇h + F (6.121)

= −h∇φB −∇E + F. (6.122)

Where we have used ∇ηB = −∇h, taking the top of the ocean at z = 0
and h the fluid column. To obtain a vorticity balance equation, and elim-
inating the pressure terms, we divide by h and take the curl. After using
the streamfunction(u, v) = (−∂ψ/∂y, ∂ψ/∂x):

J
(

ψ, f /h
)
+ J
(

h−1, E
)
= curlz(F/h) (6.123)
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Assuming a flat bottom and constant density, we see that a torque pro-
vided by the wind stress balances the torque introduced by bottom fric-
tion and a torque related to the change in planetary vorticity, just as in
Stommel. However, now an extra term appears which is related to the
combined effect of stratification and topographic variations (or Joint Ef-

fect of Baroclinicity And Relief - JEBAR - term): J
(

h−1, E
)

. For a constant
h, the JEBAR term vanishes and we recover the Stommel problem

β
∂ψ

∂x
= curlzF (6.124)

An alternative derivation accounting for the effect of topography and
stratification is given by eliminating the potential energy term instead of
the bottom pressure term. Going back to

f × u = −∇
0∫

ηB

φ dz− φB∇ηB + F (6.125)

and taking the curl gives3

βv = curlzF− curlz(φB∇ηB) = curlzF− J
(

φB, ηB

)
. (6.126)

The last term on the rhs is the bottom pressure-stress curl, or form-drag
curl, or bottom pressure torque. And now this equation holds for both a
homogeneous and stratified fluid.

For a homogeneous, frictionless and unforced gyre, this reduces to

βv = −J
(

φB, ηB

)
(6.127)

or
βv = −∇φB ×∇ηB (6.128)

There can be a meridional flow only if pressure gradient has a com-
ponent parallel to topographic contour (the isobars are not aligned with
topographic contours), and the term on the rhs is non-zero. The merid-
ional flow is driven by the curl of the form drag. In a flat-bottomed ocean,
the form drag is zero, and the meridional flow must be forced or viscous.

3curlz(h∇φB) = curlz(φB∇ηB)
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f /h contours

If we consider an ocean where both forcing and friction are absent, and
assuming an homogeneous gyre, the vorticity balance simplifies to

J
(

ψ, f /h
)
= 0 (6.129)

In an inviscid, unforced, and unstratified flow, ψ is a function of f /h, and
streamlines of constant ψ and ( f /h) contours coincide. In this case, the
depth-integrated large-scale flow must follow f /h contours. The f /h con-
tours form the characteristics of the differential equation above. This is
called a free mode, driven solely by the bottom pressure-stress curl.

This is a statement about the balance between the vortex stretching
by changes in topography and change in planetary vorticity of the fluid
column. Consider a sloping sidewall, if a water column moves down the
slope it will stretch in the vertical and increase its vorticity ( f + ζ). On a

Figure 6.21: Contours of planetary potential vorticity, f /h. Shown is
log10(| f |/h [10−12 m−1s−1]). For constant h, the f /h contours would follow
latitude circles. The influence of topography on the depth-averaged flow is small
in the tropics but becomes large at higher latitudes. In the Atlantic Ocean, the im-
print of the mid-Atlantic ridge can be seen in the region of the subtropical gyres.
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        (shaded)

Fig. 14.14 The numerically obtained steady solution to the homogenous problem
with a two-gyre forcing and friction, for a flat-bottomed doman and a domain with
sloping western sidewall. The shaded regions in the right panel show the regions
where bottom pressure-stress curl is important, in the meridional flow of the western
boundary currents.5

From Vallis (2006)

From Vallis (2006)

Figure 6.22: Numerical results for a homogeneous problem, flat bottom domain
and a domain with sloping western sidewall. The shaded regions in the right
panels show the regions where bottom pressure-stress curl is important in the
meridional flow of the western boundary current. [from Vallis (2006)]

basin scale this will be balanced by changes in f rather than changes in ζ,
so the PV balance reduces to q = f /h. In order to conserve PV, the column
will be displaced meridionally, moving along f /h contours. The new f
will be modulated by the thickness change h2/h1. For a constant h, f /h
contours would follow latitude circles.

This vorticity conservation principle is shown by the linear vorticity
equation:

βv = f
∂w
∂z

+
∂

∂z

(
τ

y
x − τx

y

)
(6.130)

Now, integrating vertically the vertical velocity does not vanish (assuming
that wT = 0):

βv︸︷︷︸
change in

planetary vorticity

= curlzτT︸ ︷︷ ︸
torque by
the wind

− curlzτB︸ ︷︷ ︸
torque by

bottom friction

− f wB︸︷︷︸
stretching of

water column

(6.131)

Now that this is clear, we can go back to the vertically integrated vor-
ticity balance

βv = curlzF− curlz(φB∇ηB), (6.132)

and considering both surface forcing and bottom drag we have the follow-
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ing vorticity budget for the vertically integrated flow

βv︸︷︷︸
1

= curlzτT︸ ︷︷ ︸
2

− curlzτB︸ ︷︷ ︸
3

− curlz(φB∇ηB)︸ ︷︷ ︸
4

. (6.133)

(1)+(2) is the Sverdrup balance; (1)+(2)+(3) is the Stommel problem. (4)
introduces the bottom pressure torque.

The torque by the wind stress drives a meridional flow across f -lines
(Fig. 6.23), as in Sverdrup balance. The western boundary layer is then
dominated by a balance between the meridional flow (βv) and the bottom
pressure-stress curl. Only where the flow crosses f /h contours is friction
needed (Fig. 6.23b). This happens where f /h contours converge and fric-
tion helps the flow move across f /h contours. In a flat-bottomed case,
friction would be necessary all along the boundary layer in order to cross
f contours(Fig. 6.23a).

The fact that the bottom pressure torque can play a more dominant role
than frictional torque for the vorticity balance in the western boundary
current questions the physical relevance of Stommel’s model.

)b()a(

(1)~(2)

(1)~(4)

(1)~(3)

Figure 6.23: The two-gyre Sverdrup flow for a flat-bottomed domain and a do-
main with sloping sidewalls. f /h contours are dotted. [adapted from Vallis
(2006)].
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Figure 6.24: A realistic barotropic streamfunction. [adapted from Vallis (2006)].

Figure 6.25: The quasi-barotropic streamfunction from MOM at 0.25 degree res-
olution (time-mean for the period 2013-2017).
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Exercices

1. Compute the Sverdrup circulation in a rectangular ocean (0 < x <
Lx, 0 < y < Ly) forced by a zonal wind stress

τx
0 (y) = −τ0 cos

πy
Ly

, τ
y
0 = 0.

Take τ0 > 0 and a constant β. Show that the Sverdrup transport
velocities and the streamfunction are

U = −(Lx − x)
τ0π2

βLy
2 cos

πy
Ly

,

V = −τ0π

βLy
sin

πy
L

,

ψ(x, y) = (Lx − x)
τ0π

βLy
sin

πy
Ly

.

Take the following parameters: Lx=5000 km, Ly=4000 km, τ0=10−4m2 s−2

(the reference density ρ0 is absorbed into the turbulent stress vector),
f = f0 + βy, with f0 = 7× 10−5 s−1, β = 2× 10−11 m−1s−1.

Show that the maximum transport across the basin width is (πB/L)τ0/β
and amounts to ∼20 Sv.

454 14 The Wind-Driven Circulation

70. Sverdrup Solution
for a Box Ocean

A prototype of application of the above theory is the Sverdrup circulation in a rectangular ocean
(0 < x < B; 0 < y < L) forced by a zonal windstress

!.x/
0 .y/ D !!0 cos

 y

L
; !y

0 D 0 (B70.1)

The windstress of this simple set-up is shown for positive !0 in the Figure below (a). This
prototype set-up aims to roughly represent the midlatitude westerlies in the northern half of
the domain and the easterly trade winds in the southern half (compare also Figure 13.1). With
positive !0, negative vorticity is introduced everywhere in the basin. Assuming for simplicity
a constant ˇ , the Sverdrup transport velocities and the stream function then becomes

U D !.B ! x/ !0 
2

ˇL2
cos

 y

L
; V D !!0 

ˇL
sin
 y

L
;

 .x; y/ D .B ! x/ !0 

ˇL
sin
 y

L

representing a clockwise circulation. Note that U follows the wind direction, and that V is
directed southward over the entire domain. Note also that the return flow in the western boundary
layer is excluded in the Sverdrup regime.
In the figure below, parameters were chosen as B D 5;000 km, L D 4;000 km, !0 D
10!4 m2 s!2 and f D f0 C ˇy with f0 D 7 " 10!5 s!1 and ˇ D 2 " 10!11 m!1 s!1.
The maximum transport across the basin width is . B=L/!0=ˇ and amounts to about 20Sv
(the unit 1Sv D 106 m3 s!1 is named after H.U. Sverdrup). The maximum volume transport is
located at the center latitude because the Ekman transport Ve D !! .x/

0 =f vanishes there and
the flow happens to be entirely geostrophic.

0 1000 2000 3000 4000 50000 1000 2000 3000 4000 5000

a dcb

0 1000 2000 3000 4000 5000
0
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2000
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4000

0 1000 2000 3000 4000 5000

The figure shows the windstress pattern (a), the transports due to the Ekman layer (b), the
geostrophic part (c) with Ug D U ! Ue; Vg D V ! Ve (note that Ue D 0) and the Sver-
drup transport (d). The Sverdrup transport stream function  is also shown in b), c), and d) as
solid lines. By comparison with the circulation scheme in Figure 14.1, it becomes clear that the
example models the Sverdrup part of the subtropical gyres occurring in the Atlantic and Pacific
oceans in the northern and southern hemisphere. Further gyres can be added, e. g. subpolar
gyres at the poleward flanks, with reversed circulation. They are separated by the line where
r: # !0 D 0.

Therefore, we consider the vertical Ekman velocity of the bottom layer, given by
(14.13), and compare it with the vertical geostrophic velocity given by (14.14). The
first term, .ˇ=f /vg, of the right-hand side of (14.13) will always be small compared
to wg.!h/ since h " d . The second term on the right-hand side of (14.13) remains
also small as long as .d=2/@vg=@x # hˇvg=f , or R=ˇ # L (originating from the
scaling @vg=@x $ vg=L), where R D .d=2/f=h measures the bottom friction by
an inverse time scale and L denotes the length scale of the zonal variation of the
geostrophic current.

When the length scale L becomes smaller, representing now the variation of the
current in a western boundary current where vg > 0, a balance between vertical
Ekman and geostrophic velocities might hold. This means that the flow must achieve

Figure 6.26: (a) Wind stress pattern. (b) The transports due to the Ekman layer.
(c) The geostrophic part with Ug = U −UE, Vg = V − VE (note that UE = 0).
(d) The Sverdrup transport. The Sverdrup transport streamfunction ψ is shown
in all plots.

2. What happens, and why, to the transport at curlzτ = 0?

3. Compute the Ekman, geostrophic and Sverdrup transports for the
following parameters. What is the total flux through the basin?
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• θ = 35◦N

• τx = 10−1 Nm−2

• τy = 0

• Ly =1000 km; Lx=5000 km

• f =10−4 s−1

• β = 2× 10−11 m−1s−1

4. Compute the Sverdrup subtropical meridional transport in the North
Atlantic for the given parameters. What is the typical size of the inte-
rior velocity (cm s−1) if the transport is carried over the upper 1 km
of the ocean and the basin is 3000 km wide?

• θ = 35◦N

• τx = 0.1 Nm−2

• τy = −0.1 Nm−2

• curlzτ = −0.1× 10−6 N m−3

• ρ0 = 103 kgm−3

• β = 2× 10−11 m−1s−1
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